Sandbox Reserved 1098
From Proteopedia
(Difference between revisions)
Line 5: | Line 5: | ||
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | ||
- | The 6HMM protein is a human[[ poly (ADP-ribose) glycohydrolase]]. It is an enzyme that will catalyze the hydrolysis of glycosides, here more specifically it will produce a free ADP-ribose. This protein is only present when the DNA is damaged. It influences the damaged chromatin through a derepression on a gene promoter. Consequently this protein is quite interesting for biotechnical applications. Indeed, developing proteins who repair DNA damage is a meaningful goal in research | + | The 6HMM protein is a human[[ poly (ADP-ribose) glycohydrolase]]. It is an enzyme that will catalyze the hydrolysis of glycosides, here more specifically it will produce a free ADP-ribose. This protein is only present when the DNA is damaged. It influences the damaged chromatin through a derepression on a gene promoter. Consequently this protein is quite interesting for biotechnical applications. Indeed, developing proteins who repair DNA damage is a meaningful goal in research especially in new cancer therapies. |
Line 18: | Line 18: | ||
== Function == | == Function == | ||
- | The protein is a complex composed of the [[ poly (ADP-ribose) glycohydrolase]] (PARG) and anthraquinone PDD00013907. The post-translational modifications of the PAR protein (poly ADP-ribose) are important for DNA stability. | + | The protein is a complex composed of the [[ poly (ADP-ribose) glycohydrolase]] (PARG) and the anthraquinone PDD00013907. The post-translational modifications of the PAR protein (poly ADP-ribose) are important for DNA stability. |
- | PDD00013907 is an anthraquinone which is a polycyclic aromatic hydrocarbon usually used in biopesticides as a pest repellant. Here it is considered as a free ligand (of identification number on PDB: 7JB) that can bind to the PARG creating the protein complex 6HMM. | + | PDD00013907 is, as already stated, an anthraquinone which is a polycyclic aromatic hydrocarbon usually used in biopesticides as a pest repellant. Here it is considered as a free ligand (of identification number on PDB: 7JB) that can bind to the PARG creating the protein complex 6HMM. |
=== Post-translational modifications and anthraquinone=== | === Post-translational modifications and anthraquinone=== | ||
- | There are several possible post-translational modifications to stabilize DNA. Most commonly they would be phosphorylation, acetylation or methylation <ref>PMID: 21037856</ref>. Another post-translational modification concerning the 6HMM protein is made on the poly(ADP-ribose) protein (PAR). PAR is composed of a repetition of ADP-ribose units linked through glycosidic ribose-ribose bonds <ref>doi: 10.1038/nature10404</ref> This allows the repair of single-strand breaks on DNA <ref name="Waszkowycz B, Smith KM, McGonagle AE, Jordan AM, Acton B, Fairweather EE, Griffiths LA, Hamilton NM, Hamilton NS, Hitchin JR, Hutton CP, James DI, Jones CD, Jones S, Mould DP, Small HF, Stowell AIJ, Tucker JA, Waddell ID, Ogilvie DJ. Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. J Med Chem. 2018 Dec 13;61(23):10767-10792.">DOI: 10.1021/acs.jmedchem.8b01407</ref>. PARG, a constituent of the 6HMM protein, will degrade PAR to allow the poly (ADP-ribose) polymerase (PARP) to free itself from the damaged, now repaired, site and | + | There are several possible post-translational modifications to stabilize DNA. Most commonly they would be phosphorylation, acetylation or methylation <ref>PMID: 21037856</ref>. Another post-translational modification concerning the 6HMM protein is made on the poly(ADP-ribose) protein (PAR). PAR is composed of a repetition of ADP-ribose units linked through glycosidic ribose-ribose bonds <ref>doi: 10.1038/nature10404</ref>. This allows the repair of single-strand breaks on DNA <ref name="Waszkowycz B, Smith KM, McGonagle AE, Jordan AM, Acton B, Fairweather EE, Griffiths LA, Hamilton NM, Hamilton NS, Hitchin JR, Hutton CP, James DI, Jones CD, Jones S, Mould DP, Small HF, Stowell AIJ, Tucker JA, Waddell ID, Ogilvie DJ. Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. J Med Chem. 2018 Dec 13;61(23):10767-10792.">DOI: 10.1021/acs.jmedchem.8b01407</ref>. PARG, a constituent of the 6HMM protein, will degrade PAR to allow the poly (ADP-ribose) polymerase (PARP) to free itself from the damaged, now repaired, site and completes as such reparation <ref>PMID: 27689388</ref>. |
The anthraquinone PDD00013907 | The anthraquinone PDD00013907 | ||
=== The mechanism === | === The mechanism === | ||
- | As said previously, poly(ADP-ribosylation) is an important post-translational modification for DNA repair. The mechanism behind this repair relies on several factors. At first, the Poly (ADP-ribose) polymerase (PARP), more specifically the subtype PARP1, will recognize and will bind to the single- | + | As said previously, poly(ADP-ribosylation) is an important post-translational modification for DNA repair. The mechanism behind this repair relies on several factors. At first, the Poly (ADP-ribose) polymerase (PARP), more specifically the subtype PARP1, will recognize and will bind to the single-stranded break on the DNA. It will then autophosphorylate due to NAD+ and form PAR chains. These will then recruit other repair proteins to the site. The role of PARG is the hydrolyzation of the specific ribose-ribose bonds present in PAR which leads to its degradation and as such the reparation cycle will be finished <ref name="Waszkowycz B, Smith KM, McGonagle AE, Jordan AM, Acton B, Fairweather EE, Griffiths LA, Hamilton NM, Hamilton NS, Hitchin JR, Hutton CP, James DI, Jones CD, Jones S, Mould DP, Small HF, Stowell AIJ, Tucker JA, Waddell ID, Ogilvie DJ. Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. J Med Chem. 2018 Dec 13;61(23):10767-10792."/>. This degradation is important because without PARG the repair cycle cannot be completed <ref>PMID: 17548475</ref> and may lead to cell death. This is partially due to the still present PARP on the previously damaged site maintained by the non-degraded PAR <ref>PMID: 16140981</ref>. |
== Diseases and Relevance == | == Diseases and Relevance == |
Revision as of 20:13, 29 December 2019
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
6HMM protein
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Oberle C, Blattner C. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Curr Genomics. 2010 May;11(3):184-98. doi: 10.2174/138920210791110979. PMID:21037856 doi:http://dx.doi.org/10.2174/138920210791110979
- ↑ Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature. 2011 Sep 4. doi: 10.1038/nature10404. PMID:21892188 doi:10.1038/nature10404
- ↑ 5.0 5.1 Waszkowycz B, Smith KM, McGonagle AE, Jordan AM, Acton B, Fairweather EE, Griffiths LA, Hamilton NM, Hamilton NS, Hitchin JR, Hutton CP, James DI, Jones CD, Jones S, Mould DP, Small HF, Stowell AIJ, Tucker JA, Waddell ID, Ogilvie DJ. Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. J Med Chem. 2018 Dec 13;61(23):10767-10792. doi: 10.1021/acs.jmedchem.8b01407., Epub 2018 Nov 19. PMID:30403352 doi:http://dx.doi.org/10.1021/acs.jmedchem.8b01407
- ↑ James DI, Smith KM, Jordan AM, Fairweather EE, Griffiths LA, Hamilton NS, Hitchin JR, Hutton CP, Jones S, Kelly P, McGonagle AE, Small H, Stowell AI, Tucker J, Waddell ID, Waszkowycz B, Ogilvie DJ. First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. ACS Chem Biol. 2016 Oct 12. PMID:27689388 doi:http://dx.doi.org/10.1021/acschembio.6b00609
- ↑ Fisher AE, Hochegger H, Takeda S, Caldecott KW. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol. 2007 Aug;27(15):5597-605. doi: 10.1128/MCB.02248-06. Epub 2007 Jun, 4. PMID:17548475 doi:http://dx.doi.org/10.1128/MCB.02248-06
- ↑ Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev. 2005 Sep 1;19(17):1951-67. doi: 10.1101/gad.1331805. PMID:16140981 doi:http://dx.doi.org/10.1101/gad.1331805