6kj6

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m (Protected "6kj6" [edit=sysop:move=sysop])
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 6kj6 is ON HOLD
+
==cryo-EM structure of Escherichia coli Crl transcription activation complex==
 +
<StructureSection load='6kj6' size='340' side='right'caption='[[6kj6]], [[Resolution|resolution]] 3.80&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[6kj6]] is a 10 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6KJ6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6KJ6 FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr>
 +
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6kj6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6kj6 OCA], [http://pdbe.org/6kj6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6kj6 RCSB], [http://www.ebi.ac.uk/pdbsum/6kj6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6kj6 ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/RPOC_ECOLI RPOC_ECOLI]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01322] [[http://www.uniprot.org/uniprot/CRL_ECOLC CRL_ECOLC]] Binds to the sigma-S subunit of RNA polymerase, activating expression of sigma-S-regulated genes. Stimulates RNA polymerase holoenzyme formation and may bind to several other sigma factors, such as sigma-70 and sigma-32. [[http://www.uniprot.org/uniprot/RPOB_ECOLI RPOB_ECOLI]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01321] [[http://www.uniprot.org/uniprot/RPOA_ECOLI RPOA_ECOLI]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. This subunit plays an important role in subunit assembly since its dimerization is the first step in the sequential assembly of subunits to form the holoenzyme.[HAMAP-Rule:MF_00059] [[http://www.uniprot.org/uniprot/RPOZ_ECOLI RPOZ_ECOLI]] Promotes RNA polymerase assembly. Latches the N- and C-terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.[HAMAP-Rule:MF_00366] [[http://www.uniprot.org/uniprot/RPOS_ECOLI RPOS_ECOLI]] Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. This sigma factor is the master transcriptional regulator of the stationary phase and the general stress response. Controls, positively or negatively, the expression of several hundred genes, which are mainly involved in metabolism, transport, regulation and stress management.[HAMAP-Rule:MF_00959]<ref>PMID:15558318</ref> <ref>PMID:15716429</ref> <ref>PMID:16511888</ref> <ref>PMID:21398637</ref> <ref>PMID:8475100</ref> Protects stationary phase cells from killing induced by endoribonuclease MazF.<ref>PMID:19251848</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
sigma(S) is a master transcription initiation factor that protects bacterial cells from various harmful environmental stresses including antibiotic pressure. Although its mechanism remains unclear, it is known that full activation of sigma(S)-mediated transcription requires a sigma(S)-specific activator, Crl. In this study, we determined a 3.80 A cryo-EM structure of an Escherichia coli transcription activation complex (E. coli Crl-TAC) comprising E. coli sigma(S)-RNA polymerase (sigma(S)-RNAP) holoenzyme, Crl, and a nucleic-acid scaffold. The structure reveals that Crl interacts with domain 2 of sigma(S) (sigma(S)2) and the RNAP core enzyme, but does not contact promoter DNA. Results from subsequent hydrogen-deuterium exchange mass spectrometry (HDX-MS) indicate that Crl stabilizes key structural motifs within sigma(S)2 to promote the assembly of the sigma(S)-RNAP holoenzyme and also to facilitate formation of an RNA polymerase-promoter DNA open complex (RPo). Our study demonstrates a unique DNA contact-independent mechanism of transcription activation, thereby defining a previously unrecognized mode of transcription activation in cells.
-
Authors:
+
Crl activates transcription by stabilizing active conformation of the master stress transcription initiation factor.,Xu J, Cui K, Shen L, Shi J, Li L, You L, Fang C, Zhao G, Feng Y, Yang B, Zhang Y Elife. 2019 Dec 17;8. pii: 50928. doi: 10.7554/eLife.50928. PMID:31846423<ref>PMID:31846423</ref>
-
Description:
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[Category: Unreleased Structures]]
+
</div>
 +
<div class="pdbe-citations 6kj6" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
 +
__TOC__
 +
</StructureSection>
 +
[[Category: DNA-directed RNA polymerase]]
 +
[[Category: Large Structures]]
 +
[[Category: Xu, J]]
 +
[[Category: Zhang, Y]]
 +
[[Category: Crl]]
 +
[[Category: Escherichia coli]]
 +
[[Category: Rna polymerase]]
 +
[[Category: Sigma s]]
 +
[[Category: Transcription]]
 +
[[Category: Transcription activation]]
 +
[[Category: Transcription initiation]]
 +
[[Category: Transcription regulator]]

Revision as of 08:18, 1 January 2020

cryo-EM structure of Escherichia coli Crl transcription activation complex

PDB ID 6kj6

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools