| Structural highlights
5wh6 is a 2 chain structure with sequence from Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , |
Gene: | PDE4D, DPDE3 (HUMAN) |
Activity: | 3',5'-cyclic-AMP phosphodiesterase, with EC number 3.1.4.53 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Disease
[PDE4D_HUMAN] Note=Genetic variations in PDE4D might be associated with susceptibility to stroke. PubMed:17006457 states that association with stroke has to be considered with caution. Defects in PDE4D are the cause of acrodysostosis type 2, with or without hormone resistance (ACRDYS2) [MIM:614613]. ACRDYS2 is a pleiotropic disorder characterized by skeletal, endocrine, and neurological abnormalities. Skeletal features include brachycephaly, midface hypoplasia with a small upturned nose, brachydactyly, and lumbar spinal stenosis. Endocrine abnormalities include hypothyroidism and hypogonadism in males and irregular menses in females. Developmental disability is a common finding but is variable in severity and can be associated with significant behavioral problems.[1]
Function
[PDE4D_HUMAN] Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes.[2] [3]
Publication Abstract from PubMed
Inhibitors of phosphodiesterases (PDEs) have been widely studied as therapeutics for the treatment of human diseases, but improvement of inhibitor selectivity is still desirable for the enhancement of inhibitor potency. Here, we report identification of a water-containing subpocket as a PDE4-specific pocket for inhibitor binding. We designed against the pocket and synthesized two enantiomers of PDE4 inhibitor Zl-n-91. The ( S)-Zl-n-91 enantiomer showed IC50 values of 12 and 20 nM for the catalytic domains of PDE4D2 and PDE4B2B, respectively, selectivity several thousand-fold greater than those of other PDE families, and potent neuroprotection activities. Crystal structures of the PDE4D2 catalytic domain in complex with each Zl-n-91 enantiomer revealed that ( S)-Zl-n-91 but not ( R)-Zl-n-91 formed a hydrogen bond with the bound water in the pocket, thus explaining its higher affinity. The structural superposition between the PDE families revealed that this water-containing subpocket is unique to PDE4 and thus valuable for the design of PDE4 selective inhibitors.
Identification of a PDE4-Specific Pocket for the Design of Selective Inhibitors.,Feng X, Wang H, Ye M, Xu XT, Xu Y, Yang W, Zhang HT, Song G, Ke H Biochemistry. 2018 Jul 31;57(30):4518-4525. doi: 10.1021/acs.biochem.8b00336., Epub 2018 Jul 17. PMID:29975048[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Michot C, Le Goff C, Goldenberg A, Abhyankar A, Klein C, Kinning E, Guerrot AM, Flahaut P, Duncombe A, Baujat G, Lyonnet S, Thalassinos C, Nitschke P, Casanova JL, Le Merrer M, Munnich A, Cormier-Daire V. Exome sequencing identifies PDE4D mutations as another cause of acrodysostosis. Am J Hum Genet. 2012 Apr 6;90(4):740-5. doi: 10.1016/j.ajhg.2012.03.003. Epub, 2012 Mar 29. PMID:22464250 doi:10.1016/j.ajhg.2012.03.003
- ↑ Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell. 2004 Jul 23;15(2):279-86. PMID:15260978 doi:http://dx.doi.org/10.1016/j.molcel.2004.07.005
- ↑ Card GL, England BP, Suzuki Y, Fong D, Powell B, Lee B, Luu C, Tabrizizad M, Gillette S, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure. 2004 Dec;12(12):2233-47. PMID:15576036 doi:http://dx.doi.org/10.1016/j.str.2004.10.004
- ↑ Feng X, Wang H, Ye M, Xu XT, Xu Y, Yang W, Zhang HT, Song G, Ke H. Identification of a PDE4-Specific Pocket for the Design of Selective Inhibitors. Biochemistry. 2018 Jul 31;57(30):4518-4525. doi: 10.1021/acs.biochem.8b00336., Epub 2018 Jul 17. PMID:29975048 doi:http://dx.doi.org/10.1021/acs.biochem.8b00336
|