Human MnSOD and Cancer Research
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
== Human Manganese Superoxide Dismutase == | == Human Manganese Superoxide Dismutase == | ||
- | <StructureSection load='2ADQ' size='340' side='right' caption=' | + | <StructureSection load='2ADQ' size='340' side='right' caption='Human superoxide dismutase complex with Mn+2 ion and K+ ion (purple) (PDB code [[2adq]]' scene=''> |
- | + | ||
- | + | ||
== History == | == History == | ||
Line 8: | Line 6: | ||
== Structure == | == Structure == | ||
- | Human Superoxide Dismutase (MnSOD) is a 22kD homotetrameric protein that is characterized by each subunit containing an <scene name='81/814062/N-terminus_structure/1'>N-terminus helical hairpin</scene> and alpha/beta domain that contribute to the catalytic site, the enzyme has four manganese active sites <ref name="Borgstahl et al">PMID:1394426</ref>. MnSOD alpha and beta C-terminus domains contain a “...three stranded antiparallel beta-sheet and five alpha-helices” <ref name="Borgstahl et al">PMID:1394426</ref>. The N-terminus helical hairpins are composed of “...two long antiparallel alpha-helices separated by a tight turn to form a helical hairpin” <ref name="Borgstahl et al">PMID:1394426</ref>. The active sites themselves are positioned between the helical and beta-sheet areas, while also joining the two domains <ref name="Borgstahl et al">PMID:1394426</ref>. Amino acid residues from both domains and a water molecule are responsible for the ligation of Manganese <ref name="Borgstahl et al">PMID:1394426</ref>. The four active sites associate in pairs on either side of the enzyme. | + | '''Human Superoxide Dismutase''' (MnSOD) is a 22kD homotetrameric protein that is characterized by each subunit containing an <scene name='81/814062/N-terminus_structure/1'>N-terminus helical hairpin</scene> and alpha/beta domain that contribute to the catalytic site, the enzyme has four manganese active sites <ref name="Borgstahl et al">PMID:1394426</ref>. MnSOD alpha and beta C-terminus domains contain a “...three stranded antiparallel beta-sheet and five alpha-helices” <ref name="Borgstahl et al">PMID:1394426</ref>. The N-terminus helical hairpins are composed of “...two long antiparallel alpha-helices separated by a tight turn to form a helical hairpin” <ref name="Borgstahl et al">PMID:1394426</ref>. The active sites themselves are positioned between the helical and beta-sheet areas, while also joining the two domains <ref name="Borgstahl et al">PMID:1394426</ref>. Amino acid residues from both domains and a water molecule are responsible for the ligation of Manganese <ref name="Borgstahl et al">PMID:1394426</ref>. The four active sites associate in pairs on either side of the enzyme. |
- | + | ||
== Function == | == Function == |
Revision as of 10:24, 12 January 2020
Human Manganese Superoxide Dismutase
|
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Azadmanesh J, Borgstahl GEO. A Review of the Catalytic Mechanism of Human Manganese Superoxide Dismutase. Antioxidants (Basel). 2018 Jan 30;7(2). pii: antiox7020025. doi:, 10.3390/antiox7020025. PMID:29385710 doi:http://dx.doi.org/10.3390/antiox7020025
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 Borgstahl GE, Parge HE, Hickey MJ, Beyer WF Jr, Hallewell RA, Tainer JA. The structure of human mitochondrial manganese superoxide dismutase reveals a novel tetrameric interface of two 4-helix bundles. Cell. 1992 Oct 2;71(1):107-18. PMID:1394426
- ↑ 3.0 3.1 3.2 Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003 Oct 15;552(Pt 2):335-44. doi: 10.1113/jphysiol.2003.049478. PMID:14561818 doi:http://dx.doi.org/10.1113/jphysiol.2003.049478
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 Dhar SK, Batinic-Haberle I, St Clair DK. UVB-induced inactivation of manganese-containing superoxide dismutase promotes mitophagy via ROS-mediated mTORC2 pathway activation. J Biol Chem. 2019 Mar 11. pii: RA118.006595. doi: 10.1074/jbc.RA118.006595. PMID:30858178 doi:http://dx.doi.org/10.1074/jbc.RA118.006595
- ↑ 5.0 5.1 Church SL, Grant JW, Ridnour LA, Oberley LW, Swanson PE, Meltzer PS, Trent JM. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3113-7. PMID:8464931
- ↑ 6.0 6.1 6.2 6.3 Mapuskar KA, Anderson CM, Spitz DR, Batinic-Haberle I, Allen BG, E Oberley-Deegan R. Utilizing Superoxide Dismutase Mimetics to Enhance Radiation Therapy Response While Protecting Normal Tissues. Semin Radiat Oncol. 2019 Jan;29(1):72-80. doi: 10.1016/j.semradonc.2018.10.005. PMID:30573187 doi:http://dx.doi.org/10.1016/j.semradonc.2018.10.005
- ↑ 7.0 7.1 7.2 7.3 Torrens-Mas M, Hernandez-Lopez R, Oliver J, Roca P, Sastre-Serra J. Sirtuin 3 silencing improves oxaliplatin efficacy through acetylation of MnSOD in colon cancer. J Cell Physiol. 2018 Aug;233(8):6067-6076. doi: 10.1002/jcp.26443. Epub 2018 Mar , 6. PMID:29323702 doi:http://dx.doi.org/10.1002/jcp.26443
- ↑ 8.0 8.1 Lu J, Zhang H, Chen X, Zou Y, Li J, Wang L, Wu M, Zang J, Yu Y, Zhuang W, Xia Q, Wang J. A Small Molecule Activator of SIRT3 Promotes Deacetylation and Activation of Manganese Superoxide Dismutase. Free Radic Biol Med. 2017 Jul 12. pii: S0891-5849(17)30684-6. doi:, 10.1016/j.freeradbiomed.2017.07.012. PMID:28711502 doi:http://dx.doi.org/10.1016/j.freeradbiomed.2017.07.012