Sandbox Reserved 1105
From Proteopedia
(Difference between revisions)
Line 22: | Line 22: | ||
# ''' TTR amyloid fibril ''' | # ''' TTR amyloid fibril ''' | ||
- | TTR aggregation into amyloid fibrils leads to | + | Inappropriate TTR foldings cause amyloid depositions. Indeed, aggregates formation can be explained by a destabilization of the TTR’s native conformation, namely the tetramer dissociation into an alternative folded monomeric intermediate. The final result is a protein self-assembly. A particular beta-pleated-sheet structure characterizes the proteins that form insoluble fibrils. [4] |
+ | TTR aggregation into amyloid fibrils leads to insolubility. Consequently, it creates abnormal deposits in the peripheral nerves in the case of FAP, in the central nerves for CNSA, and in heart tissues for FAC and SSA. Therefore, the insoluble proteins alter the corresponding organ and tissue functions, and are unable to be subjected to a proper degradation by cell metabolism. | ||
- | In most of the cases, autosomal dominant mutations of the TTR gene are at the origin of the Human familial amyloidosis (FAP, FAC, CNSA). Val30Met is the most recensed amyloidogenic point mutation observed ([[4tl4]]). However, SSA differentiates from these TTR-related hereditary amyloidosis by usually affecting patients in advanced age, as it involves an aggregate formation due to a progressive accumulation of wild-type TTR proteins mainly associated to misshaping and beta-strand lacking [7], [8]. | + | In most of the cases, autosomal dominant mutations of the TTR gene are at the origin of the Human familial amyloidosis (FAP, FAC, CNSA) through TTR conformational disorder. Val30Met is the most recensed amyloidogenic point mutation observed ([[4tl4]]). However, SSA differentiates from these TTR-related hereditary amyloidosis by usually affecting patients in advanced age, as it involves an aggregate formation due to a progressive accumulation of wild-type TTR proteins mainly associated to misshaping and beta-strand lacking [7], [8]. |
- | Inappropriate TTR foldings cause amyloid depositions. Indeed, aggregates formation can be explained by a destabilization of the TTR’s native conformation, namely the tetramer dissociation into an alternative folded monomeric intermediate. The final result is a protein self-assembly. A particular beta-pleated-sheet structure characterizes the proteins that form insoluble fibrils. [4] | ||
# ''' Drug development ''' | # ''' Drug development ''' |
Revision as of 18:04, 12 January 2020
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
Your Heading Here (maybe something like 'Structure')
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644