Sandbox Reserved 1091

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
{{Sandbox_ESBS_2019}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE -->
{{Sandbox_ESBS_2019}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE -->
-
== The serine protease from ''Aeromonas sobria'' ==
+
 
 +
== '''The serine protease from ''Aeromonas sobria'' ''' ==
<StructureSection load='3hjr' size='340' side='right' caption='General structure of ASP protein (with Ca2+ Binding Site and Disulfide Bridges)' scene=''>
<StructureSection load='3hjr' size='340' side='right' caption='General structure of ASP protein (with Ca2+ Binding Site and Disulfide Bridges)' scene=''>
Line 44: Line 45:
'''The P-domain:''' The core of the P-domain in ASP contains 8 béta-strands (béta 16 18 23 and 26). The <scene name='82/829344/Extra_occluding_region/2'>extra occluding-region</scene> is comprised of two parts, <scene name='82/829344/Pl1/3'>pL1</scene>(Gly 521–Thr 525, béta 5, 6, and 12) and <scene name='82/829344/Pl2/3'>pL2</scene> (Gly-557–Asn-578, béta 25), and it is situated close to <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> Asp-78,His-115,and Ser-336.
'''The P-domain:''' The core of the P-domain in ASP contains 8 béta-strands (béta 16 18 23 and 26). The <scene name='82/829344/Extra_occluding_region/2'>extra occluding-region</scene> is comprised of two parts, <scene name='82/829344/Pl1/3'>pL1</scene>(Gly 521–Thr 525, béta 5, 6, and 12) and <scene name='82/829344/Pl2/3'>pL2</scene> (Gly-557–Asn-578, béta 25), and it is situated close to <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> Asp-78,His-115,and Ser-336.
-
All these domains can be represented schematically
+
All these domains can be represented schematically :

Revision as of 10:35, 16 January 2020

This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The serine protease from Aeromonas sobria

General structure of ASP protein (with Ca2+ Binding Site and Disulfide Bridges)

Drag the structure with the mouse to rotate

References

  1. Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434-8. PMID:2646633
  2. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Takahisa Imamura et al., 2017
  3. http://www.msdmanuals.com/professional/critical-care-medicine/sepsis-and-septic-shock/sepsis-and-septic-shock
  4. Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. Kobayashi H et al. Biol. Chem. 290(17):11130-43 (2015)
  5. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
  6. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
  7. Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
  8. Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Murakami Y et al. Biol Chem. 393(10):1193-200 (2012)

Personal tools