Sandbox Reserved 1091

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 23: Line 23:
The '''maturation of ASP''' is achieved by ORF2. This protein plays the role of an external chaperone and is necessary for the construction of the stable ASP. Indeed, ASP doesn’t contain any propeptide that is involved in the proper folding of the protein. This is a major difference with an other protein, close to ASP : Kex2 ([[1r64]]) <ref>Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. Kobayashi H et al. Biol. Chem. 290(17):11130-43 (2015)</ref>
The '''maturation of ASP''' is achieved by ORF2. This protein plays the role of an external chaperone and is necessary for the construction of the stable ASP. Indeed, ASP doesn’t contain any propeptide that is involved in the proper folding of the protein. This is a major difference with an other protein, close to ASP : Kex2 ([[1r64]]) <ref>Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. Kobayashi H et al. Biol. Chem. 290(17):11130-43 (2015)</ref>
-
The ORF2 protein is composed of 152 amino-acids coded by the orf2 gene of 456 base pairs. The N-terminal extension and the C-terminal tail of the protein are implicated in the maturation of ASP. In fact, a complex ASP-ORF2 is formed. This association requires a specific organization of ASP in the space and more specifically the His595. The P-domain of ASP doesn’t bind to ORF2 but the sixth residue from the C-terminus domain of ORF2 interacts with the non-mature ASP. In the complex, the active site of ASP is blocked. This protects the protein from degradation by others.
+
The ORF2 protein is composed of 152 amino-acids coded by the orf2 gene of 456 base pairs. The N-terminal extension and the C-terminal tail of the protein are implicated in the maturation of ASP. In fact, a complex ASP-ORF2 is formed. This association requires a specific organization of ASP in the space and more specifically the His595. The <scene name='82/829344/The_p-domain/2'>P-domain</scene> of ASP doesn’t bind to ORF2 but the sixth residue from the C-terminus domain of ORF2 interacts with the non-mature ASP. In the complex, the active site of ASP is blocked. This protects the protein from degradation by others.
When the complex is formed, it moves to the extracellular space and then it dissociates. The active ASP can dissociate ORF2 and exercise its virulence activity in the cell. <ref>Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)</ref>
When the complex is formed, it moves to the extracellular space and then it dissociates. The active ASP can dissociate ORF2 and exercise its virulence activity in the cell. <ref>Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)</ref>

Revision as of 10:37, 16 January 2020

This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The serine protease from Aeromonas sobria

General structure of ASP protein (with Ca2+ Binding Site and Disulfide Bridges)

Drag the structure with the mouse to rotate

References

  1. Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434-8. PMID:2646633
  2. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Takahisa Imamura et al., 2017
  3. http://www.msdmanuals.com/professional/critical-care-medicine/sepsis-and-septic-shock/sepsis-and-septic-shock
  4. Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. Kobayashi H et al. Biol. Chem. 290(17):11130-43 (2015)
  5. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
  6. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
  7. Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
  8. Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Murakami Y et al. Biol Chem. 393(10):1193-200 (2012)

Personal tools