Sandbox Reserved 1095
From Proteopedia
(Difference between revisions)
Line 50: | Line 50: | ||
=== Interaction with other GPCRs === | === Interaction with other GPCRs === | ||
- | It has been discovered that AT1Rs were also able to bind with other GPCRs to form homo- or heterodimers. Those interactions can modify the sensitivity of the receptor, which leads to different physiological and pathological conditions than the GPCR monomer <ref name="Zhang2015" /><ref name="Takanobu2017"> [https://doi.org/10.1016/j.phrs.2017.06.013 Takezako T, Unal H, Karnik SS, Node K. Current topics in angiotensin II type 1 receptor research: Focus on inverse agonism, receptor dimerization and biased agonism. Pharmacol Res. 2017;123:40–50. doi:10.1016/j.phrs.2017.06.013] </ref>. The most known heterodimers including AT1 receptor are with [[ | + | It has been discovered that AT1Rs were also able to bind with other GPCRs to form homo- or heterodimers. Those interactions can modify the sensitivity of the receptor, which leads to different physiological and pathological conditions than the GPCR monomer <ref name="Zhang2015" /><ref name="Takanobu2017"> [https://doi.org/10.1016/j.phrs.2017.06.013 Takezako T, Unal H, Karnik SS, Node K. Current topics in angiotensin II type 1 receptor research: Focus on inverse agonism, receptor dimerization and biased agonism. Pharmacol Res. 2017;123:40–50. doi:10.1016/j.phrs.2017.06.013] </ref>. The most known heterodimers including AT1 receptor are with [[Beta-2 adrenergic receptor]], [https://en.wikipedia.org/wiki/Apelin_receptor the apelin receptor] ([[5vbl]]), and AT2 receptor. Those interactions could be facilitated by several transmembrane domains. |
The oligomeric complexes' formation complicate the understanding of AT1R pharmacology. | The oligomeric complexes' formation complicate the understanding of AT1R pharmacology. |
Revision as of 12:59, 16 January 2020
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
Human Angiotensin Receptor
Angiotensin receptors belong to the G protein coupled receptor (GPCR) family. This is the hormone receptor of the angiotensin II type 1. It is a trans-membrane protein located mainly in heart, brain, liver and kidneys.
|
References
- ↑ Kawai T, Forrester SJ, O'Brien S, Baggett A, Rizzo V, Eguchi S. AT1 receptor signaling pathways in the cardiovascular system. Pharmacol Res. 2017 Nov;125(Pt A):4-13. doi: 10.1016/j.phrs.2017.05.008. Epub, 2017 May 17. PMID:28527699 doi:http://dx.doi.org/10.1016/j.phrs.2017.05.008
- ↑ Angiotensin receptors: History and mysteries, T.L. Goodfriend. American Journal of Hypertension, Volume 13, Issue 4, April 2000, Pages 442–449, https://doi.org/10.1016/S0895-7061(99)00212-5
- ↑ [https://www.ahajournals.org/doi/abs/10.1161/01.HYP.17.5.720 "Nomenclature for angiotensin receptors. A report of the Nomenclature Committee of the Council for High Blood Pressure Research." Hypertension, 17(5), pp. 720–721
- ↑ 4.0 4.1 4.2 Zhang H, Unal H, Desnoyer R, et al. Structural Basis for Ligand Recognition and Functional Selectivity at Angiotensin Receptor. J Biol Chem. 2015;290(49):29127–29139. doi:10.1074/jbc.M115.689000
- ↑ Zhang H, Unal H, Gati C, et al. Structure of the Angiotensin receptor revealed by serial femtosecond crystallography. Cell. 2015;161(4):833–844. doi:10.1016/j.cell.2015.04.011
- ↑ http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum/GetPage.pl
- ↑ Fillion D, Cabana J, Guillemette G, Leduc R, Lavigne P, Escher E. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode. J Biol Chem. 2013;288(12):8187–8197. doi:10.1074/jbc.M112.442053
- ↑ Singh KD, Unal H, Desnoyer R, Karnik SS. Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT1R Initiated by van der Waals Attraction. J Chem Inf Model. 2019;59(1):373–385. doi:10.1021/acs.jcim.8b00583
- ↑ 9.0 9.1 Takezako T, Unal H, Karnik SS, Node K. Current topics in angiotensin II type 1 receptor research: Focus on inverse agonism, receptor dimerization and biased agonism. Pharmacol Res. 2017;123:40–50. doi:10.1016/j.phrs.2017.06.013