Sandbox Reserved 1091
From Proteopedia
(Difference between revisions)
Line 60: | Line 60: | ||
A schematic representation of the mechanism with the involved amino acids can be found under the following link : [http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png '''mechanism of the reaction''' ] | A schematic representation of the mechanism with the involved amino acids can be found under the following link : [http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png '''mechanism of the reaction''' ] | ||
- | The peptide bonds were shown to be cleaved when two basic residues were in sequence. A Lys residue at positions P1 and P2 relative to the cleavage site is prefered. If an Arg residue is at P4 position the substrate cleavage will be enhanced. <ref>Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,</ref> | ||
== Properties == | == Properties == | ||
ASP has its highest activity at pH 7,5 and loses it after heating at 60° for 10 minutes. <ref>Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)</ref> | ASP has its highest activity at pH 7,5 and loses it after heating at 60° for 10 minutes. <ref>Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)</ref> | ||
+ | |||
+ | The peptide bonds were shown to be cleaved when two basic residues were in sequence. A Lys residue at positions P1 and P2 relative to the cleavage site is prefered. If an Arg residue is at P4 position the substrate cleavage will be enhanced. <ref>Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,</ref> | ||
Experiments have been done in order to establish the sensitivity of ASP to proteases. In has been found that the ASP protease activity was strongly attenuated by serine protease inhibitors ([http://en.wikipedia.org/wiki/Diisopropyl_fluorophosphate DFP], [http://fr.wikipedia.org/wiki/Fluorure_de_4-(2-aminoéthyl)benzènesulfonyle AEBSF]). Moreover, a soybean [http://en.wikipedia.org/wiki/Trypsin_inhibitor trypsin inhibitor] was shown not to block the proteolytic action of ASP itself but could inhibit the [http://en.m.wikipedia.org/wiki/Vascular_permeability vascular permeability] enhancing activity that follows after injection of ASP into epithelial cells. <ref>Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)</ref> | Experiments have been done in order to establish the sensitivity of ASP to proteases. In has been found that the ASP protease activity was strongly attenuated by serine protease inhibitors ([http://en.wikipedia.org/wiki/Diisopropyl_fluorophosphate DFP], [http://fr.wikipedia.org/wiki/Fluorure_de_4-(2-aminoéthyl)benzènesulfonyle AEBSF]). Moreover, a soybean [http://en.wikipedia.org/wiki/Trypsin_inhibitor trypsin inhibitor] was shown not to block the proteolytic action of ASP itself but could inhibit the [http://en.m.wikipedia.org/wiki/Vascular_permeability vascular permeability] enhancing activity that follows after injection of ASP into epithelial cells. <ref>Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)</ref> |
Revision as of 18:42, 16 January 2020
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
The serine protease from Aeromonas sobria : ASP
|
References
- ↑ Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434-8. PMID:2646633
- ↑ Siezen RJ & Leunissen JAM (1997) Subtilase: the superfamily of subtilisin-like serine proteases. Protein Sci 6: 501–523.
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Takahisa Imamura et al. (2017)
- ↑ http://www.msdmanuals.com/professional/critical-care-medicine/sepsis-and-septic-shock/sepsis-and-septic-shock
- ↑ Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. Kobayashi H et al. Biol. Chem. 290(17):11130-43 (2015)
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
- ↑ Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor. H Kobayashi et al. J Biol Chem. 284(40): 27655–27663 (2009)
- ↑ http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
- ↑ Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
- ↑ Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
- ↑ Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
- ↑ Joseph, S. W., O. P. Daily, W. S. Hunt, R. J. Seidler, D. A. Allen, and R. R. Colwell. 1979. Aeromonas primary wound infection of a diver in polluted waters. J. Clin. Microbiol. 10:46-49.
- ↑ Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
- ↑ Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Murakami Y et al. Biol Chem. 393(10):1193-200 (2012)