Sandbox Reserved 1091

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 40: Line 40:
'''The Subtilisin Domain:''' It contains ten helices (alpha 1 to 10) and twelve chains (beta 1 to 10 and béta 13 to 14). The N-terminal domain of ASP seems to be like the catalytic domain of Kex2 ([[1r64]]), which is similar to those of subtilisin and other subtilisin-related proteases. This ASP catalytic site contains <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> Asp78, His115, and Ser336 residues characteristic of subtilisins. In addition, four loops (L) protrude from the N-terminal subtilisin domain of ASP : Gly3– Pro26 (<scene name='82/829344/L1/2'>L1</scene>), Asn221–Phe241 (<scene name='82/829344/L2/2'>L2</scene>), Gly300–Cys326 (<scene name='82/829344/L3/2'>L3</scene>), and Gln-377–Glu-397 (<scene name='82/829344/L4/2'>L4</scene>). L1, L2, and L3 have random coil structure, whereas L4 forms a hairpin that protrudes toward the P-domain. Moreover, two <scene name='82/829344/Disulfide_bridges/2'>disulfide bridges</scene> are formed between Cys4 and Cys24 in L1 and between Cys301 and Cys326 in L3, which stabilize those loops.
'''The Subtilisin Domain:''' It contains ten helices (alpha 1 to 10) and twelve chains (beta 1 to 10 and béta 13 to 14). The N-terminal domain of ASP seems to be like the catalytic domain of Kex2 ([[1r64]]), which is similar to those of subtilisin and other subtilisin-related proteases. This ASP catalytic site contains <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> Asp78, His115, and Ser336 residues characteristic of subtilisins. In addition, four loops (L) protrude from the N-terminal subtilisin domain of ASP : Gly3– Pro26 (<scene name='82/829344/L1/2'>L1</scene>), Asn221–Phe241 (<scene name='82/829344/L2/2'>L2</scene>), Gly300–Cys326 (<scene name='82/829344/L3/2'>L3</scene>), and Gln-377–Glu-397 (<scene name='82/829344/L4/2'>L4</scene>). L1, L2, and L3 have random coil structure, whereas L4 forms a hairpin that protrudes toward the P-domain. Moreover, two <scene name='82/829344/Disulfide_bridges/2'>disulfide bridges</scene> are formed between Cys4 and Cys24 in L1 and between Cys301 and Cys326 in L3, which stabilize those loops.
-
'''The P-domain:''' The core of the P-domain in ASP contains eight beta-strands (beta 16 18 23 and 26). The <scene name='82/829344/Extra_occluding_region/2'>extra occluding-region</scene> is comprised of two parts, <scene name='82/829344/Pl1/4'>pL1</scene>(Gly521–Thr525, beta 5, 6, and 12) and <scene name='82/829344/Pl2/4'>pL2</scene> (Gly557–Asn578, béta 25), and it is situated close to <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> Asp78,His115,and Ser336.
+
'''The P-domain:''' The core of the P-domain in ASP contains eight beta-strands (beta 16 18 23 and 26). The <scene name='82/829344/Extra_occluding_region/2'>extra occluding-region</scene> is comprised of two parts, <scene name='82/829344/Pl1/4'>pL1</scene> (Gly521–Thr525, beta 5, 6, and 12) and <scene name='82/829344/Pl2/4'>pL2</scene> (Gly557–Asn578, béta 25), and it is situated close to <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> Asp78,His115,and Ser336.
All these domains are represented schematically in the article <ref>Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor. H Kobayashi et al. J Biol Chem. 284(40): 27655–27663 (2009)</ref> : [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785694/figure/F2/ '''representation 2D of ASP''']. On these figures, we can see the different domains of the protein in A and also a superposition with the Kex2. We clearly see the resemblance between both serine protease, and the extra occluding region in the C-terminal region of ASP.
All these domains are represented schematically in the article <ref>Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor. H Kobayashi et al. J Biol Chem. 284(40): 27655–27663 (2009)</ref> : [http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785694/figure/F2/ '''representation 2D of ASP''']. On these figures, we can see the different domains of the protein in A and also a superposition with the Kex2. We clearly see the resemblance between both serine protease, and the extra occluding region in the C-terminal region of ASP.

Revision as of 20:23, 16 January 2020

This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The serine protease from Aeromonas sobria : ASP

General structure of ASP protein (with Ca2+ Binding Site and Disulfide Bridges)

Drag the structure with the mouse to rotate

References

  1. Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434-8. PMID:2646633
  2. Siezen RJ & Leunissen JAM (1997) Subtilase: the superfamily of subtilisin-like serine proteases. Protein Sci 6: 501–523.
  3. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Takahisa Imamura et al. (2017)
  4. http://www.msdmanuals.com/professional/critical-care-medicine/sepsis-and-septic-shock/sepsis-and-septic-shock
  5. Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. Kobayashi H et al. Biol. Chem. 290(17):11130-43 (2015)
  6. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
  7. Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor. H Kobayashi et al. J Biol Chem. 284(40): 27655–27663 (2009)
  8. http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png
  9. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
  10. Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
  11. Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
  12. Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
  13. Joseph, S. W., O. P. Daily, W. S. Hunt, R. J. Seidler, D. A. Allen, and R. R. Colwell. 1979. Aeromonas primary wound infection of a diver in polluted waters. J. Clin. Microbiol. 10:46-49.
  14. Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
  15. Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Murakami Y et al. Biol Chem. 393(10):1193-200 (2012)

Personal tools