Sandbox Reserved 1091
From Proteopedia
(Difference between revisions)
Line 59: | Line 59: | ||
== Properties == | == Properties == | ||
- | ASP has its | + | ASP has its highest activity at pH 7,5 and loses it after heating at 60° for 10 minutes. <ref>Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)</ref> |
The '''peptide bonds''' were shown to be cleaved when two basic residues were in sequence. A Lys residue at positions P1 and P2 relative to the cleavage site is prefered. If an Arg residue is at P4 position the substrate cleavage will be enhanced. <ref>Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,</ref> | The '''peptide bonds''' were shown to be cleaved when two basic residues were in sequence. A Lys residue at positions P1 and P2 relative to the cleavage site is prefered. If an Arg residue is at P4 position the substrate cleavage will be enhanced. <ref>Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,</ref> | ||
Line 66: | Line 66: | ||
The experimental finding suggests that epithelial trypsin-like proteases mediate the reaction causing enhanced vascular permeability. It is likely that ASP stimulates the secretion and maturation of epithelial trypsin proteases, thus enhancing vascular permeability. ASP could stimulate the [http://en.wikipedia.org/wiki/Bradykinin bradykinin]-releasing pathway, thus stimulating mast cells to release histamine and further enhance the vascular permeability. | The experimental finding suggests that epithelial trypsin-like proteases mediate the reaction causing enhanced vascular permeability. It is likely that ASP stimulates the secretion and maturation of epithelial trypsin proteases, thus enhancing vascular permeability. ASP could stimulate the [http://en.wikipedia.org/wiki/Bradykinin bradykinin]-releasing pathway, thus stimulating mast cells to release histamine and further enhance the vascular permeability. | ||
- | Antihistaminic agents ([http://en.wikipedia.org/wiki/Diphenhydramine diphenhydramine] and [http://en.wikipedia.org/wiki/Mepyramine pyrilamine]) were shown to efficiently inhibit vascular permeability enhancing the activity of the ASP. It is very likely that the vascular permeability enhancement is related to the release of [http://en.wikipedia.org/wiki/Histamine histamine] from [http://en.wikipedia.org/wiki/Mast_cell mast cells]. | + | '''Antihistaminic agents''' ([http://en.wikipedia.org/wiki/Diphenhydramine diphenhydramine] and [http://en.wikipedia.org/wiki/Mepyramine pyrilamine]) were shown to efficiently inhibit vascular permeability enhancing the activity of the ASP. It is very likely that the vascular permeability enhancement is related to the release of [http://en.wikipedia.org/wiki/Histamine histamine] from [http://en.wikipedia.org/wiki/Mast_cell mast cells]. |
Through histopathological examinations it was shown that mast cells appeared around the injection site, confirming the role of histamine as a key factor.<ref>Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)</ref> | Through histopathological examinations it was shown that mast cells appeared around the injection site, confirming the role of histamine as a key factor.<ref>Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)</ref> | ||
Revision as of 20:25, 16 January 2020
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
The serine protease from Aeromonas sobria : ASP
|
References
- ↑ Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434-8. PMID:2646633
- ↑ Siezen RJ & Leunissen JAM (1997) Subtilase: the superfamily of subtilisin-like serine proteases. Protein Sci 6: 501–523.
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Takahisa Imamura et al. (2017)
- ↑ http://www.msdmanuals.com/professional/critical-care-medicine/sepsis-and-septic-shock/sepsis-and-septic-shock
- ↑ Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. Kobayashi H et al. Biol. Chem. 290(17):11130-43 (2015)
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
- ↑ Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor. H Kobayashi et al. J Biol Chem. 284(40): 27655–27663 (2009)
- ↑ http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png
- ↑ Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
- ↑ Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
- ↑ Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
- ↑ Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
- ↑ Joseph, S. W., O. P. Daily, W. S. Hunt, R. J. Seidler, D. A. Allen, and R. R. Colwell. 1979. Aeromonas primary wound infection of a diver in polluted waters. J. Clin. Microbiol. 10:46-49.
- ↑ Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
- ↑ Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Murakami Y et al. Biol Chem. 393(10):1193-200 (2012)