Sandbox Reserved 1100

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
The organisation of the structure of the Adiponectin receptor 1 is the opposite to [[G protein-coupled receptor]] family. Indeed, the Adiponectin receptor has an internal <scene name='82/829353/N-terminus_domain/2'>N-terminus domain</scene> and an external <scene name='82/829353/C-terminus_domain/3'>C-terminus domain</scene> while the G-protein family has an internal N-terminus domain and an external C-terminus domain. <ref name="doc3"> Takashi Kadowaki and Toshimasa Yamauchi et al. « Adiponectin and adiponectin receptors». 2015 https://www.ncbi.nlm.nih.gov/pubmed/15897298</ref> <ref name="doc1"/> <ref name="doc5"> Parker-Duffen JL, Nakamura K, Silver M, Zuriaga MA, MacLauchlan S, Aprahamian TR, Walsh K et al. «Divergent roles for adiponectin receptor 1 (AdipoR1) and AdipoR2 in mediating revascularization and metabolic dysfunction in vivo.» 17 April 2014 : https://www.ncbi.nlm.nih.gov/pubmed/24742672</ref>
The organisation of the structure of the Adiponectin receptor 1 is the opposite to [[G protein-coupled receptor]] family. Indeed, the Adiponectin receptor has an internal <scene name='82/829353/N-terminus_domain/2'>N-terminus domain</scene> and an external <scene name='82/829353/C-terminus_domain/3'>C-terminus domain</scene> while the G-protein family has an internal N-terminus domain and an external C-terminus domain. <ref name="doc3"> Takashi Kadowaki and Toshimasa Yamauchi et al. « Adiponectin and adiponectin receptors». 2015 https://www.ncbi.nlm.nih.gov/pubmed/15897298</ref> <ref name="doc1"/> <ref name="doc5"> Parker-Duffen JL, Nakamura K, Silver M, Zuriaga MA, MacLauchlan S, Aprahamian TR, Walsh K et al. «Divergent roles for adiponectin receptor 1 (AdipoR1) and AdipoR2 in mediating revascularization and metabolic dysfunction in vivo.» 17 April 2014 : https://www.ncbi.nlm.nih.gov/pubmed/24742672</ref>
-
The Adiponectin receptor 1 contains <scene name='82/829353/7helices/1'>seven transmembrane helices</scene> linked thanks to three <scene name='82/829353/3externalloop/1'>extracellular loops</scene> and three <scene name='82/829353/3externalloop/1'>intracellular loops</scene>. The <scene name='82/829353/Helix1/2'>helix I</scene> is formed by the residues 135 to 157, <scene name='82/829353/Helix2/2'>helix II</scene> by the residues 169 to 192, the <scene name='82/829353/Helix3/2'>helix III</scene> by the residues 198 to 227, the <scene name='82/829353/Helix4/2'>helice IV</scene> by the residues 232 to 252, the <scene name='82/829353/Helice5/2'>helix V</scene> by the residues 264 to 288 <scene name='82/829353/Helix6/2'>heliX VI</scene> by the residues 305 to 319 and the <scene name='82/829353/Helix7/2'>helix VII</scene> by the residues 336 to 364 .Besides, the <scene name='82/829353/Helix3/2'>helix III</scene> and <scene name='82/829353/Helix7/2'>VII</scene> are longer than the other helices. These <scene name='82/829353/7tm/2'>seven transmembrane helices</scene> have a clockwise circular specific organisation (from helix I to helix VII) and form a bundle.
+
The Adiponectin receptor 1 contains <scene name='82/829353/7helices/1'>seven transmembrane helices</scene> linked thanks to three <scene name='82/829353/3externalloop/1'>extracellular loops</scene> and <scene name='82/829353/3internalloop/1'>three intracellular loops</scene>. The <scene name='82/829353/Helix1/2'>helix I</scene> is formed by the residues 135 to 157, <scene name='82/829353/Helix2/2'>helix II</scene> by the residues 169 to 192, the <scene name='82/829353/Helix3/2'>helix III</scene> by the residues 198 to 227, the <scene name='82/829353/Helix4/2'>helice IV</scene> by the residues 232 to 252, the <scene name='82/829353/Helice5/2'>helix V</scene> by the residues 264 to 288 <scene name='82/829353/Helix6/2'>heliX VI</scene> by the residues 305 to 319 and the <scene name='82/829353/Helix7/2'>helix VII</scene> by the residues 336 to 364 .Besides, the <scene name='82/829353/Helix3/2'>helix III</scene> and <scene name='82/829353/Helix7/2'>VII</scene> are longer than the other helices. These <scene name='82/829353/7tm/2'>seven transmembrane helices</scene> have a clockwise circular specific organisation (from helix I to helix VII) and form a bundle.
Concerning the extracellular faces, the three <scene name='82/829353/3externalloop/1'>extracellular loops</scene> which connect the transmembrane helices are exposed and it is the same for the <scene name='82/829353/C-terminus_domain/3'>C-terminus domain</scene>. Besides, <scene name='82/829353/Helix3/2'>helix III</scene> and the <scene name='82/829353/Helix7/2'>VII</scene> are longer than the other helices and as a result the <scene name='82/829353/C-terminus_domain/3'>C-terminus domain</scene> two turns of the <scene name='82/829353/Helix7/2'>VII</scene> are exposed too. <ref name="doc1"/>
Concerning the extracellular faces, the three <scene name='82/829353/3externalloop/1'>extracellular loops</scene> which connect the transmembrane helices are exposed and it is the same for the <scene name='82/829353/C-terminus_domain/3'>C-terminus domain</scene>. Besides, <scene name='82/829353/Helix3/2'>helix III</scene> and the <scene name='82/829353/Helix7/2'>VII</scene> are longer than the other helices and as a result the <scene name='82/829353/C-terminus_domain/3'>C-terminus domain</scene> two turns of the <scene name='82/829353/Helix7/2'>VII</scene> are exposed too. <ref name="doc1"/>
In the middle of the seven transmembrane helices there is a large internal cavity where a <scene name='82/829353/Zinc-binding_site/2'>zinc-binding site</scene> can be found. This cavity located from the cytoplasmic surface to the middle of the outer lipid layer of the membrane has small openings between the <scene name='82/829353/Helice5/2'>helix V</scene> and <scene name='82/829353/Helix6/2'>VI</scene>, and between the <scene name='82/829353/Helix4/2'>helice IV</scene> and <scene name='82/829353/Helix6/2'>VI</scene>. It has been assumed that these openings are involved in the entrance and exit of both substrate and product.
In the middle of the seven transmembrane helices there is a large internal cavity where a <scene name='82/829353/Zinc-binding_site/2'>zinc-binding site</scene> can be found. This cavity located from the cytoplasmic surface to the middle of the outer lipid layer of the membrane has small openings between the <scene name='82/829353/Helice5/2'>helix V</scene> and <scene name='82/829353/Helix6/2'>VI</scene>, and between the <scene name='82/829353/Helix4/2'>helice IV</scene> and <scene name='82/829353/Helix6/2'>VI</scene>. It has been assumed that these openings are involved in the entrance and exit of both substrate and product.

Revision as of 22:21, 16 January 2020

This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The Adiponectin receptor 1

Adiponectin receptor 1 (AdipoR1) structure

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 1.3 1.4 Tanabe, Hiroaki, Yoshifumi Fujii, Miki Okada-Iwabu, Masato Iwabu, Yoshihiro Nakamura, Toshiaki Hosaka, Kanna Motoyama, et al. « Crystal structures of the human adiponectin receptors ». Nature 520, nᵒ 7547 (1 avril 2015): 312‑16. https://doi.org/10.1038/nature14301
  2. 2.0 2.1 2.2 2.3 2.4 2.5 Kadowaki, Takashi et al. “Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome.” The Journal of clinical investigation vol. 116,7 (2006): 1784-92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1483172/
  3. 3.0 3.1 3.2 3.3 3.4 Whitehead, J. P., A. A. Richards, I. J. Hickman, G. A. Macdonald, et J. B. Prins. « Adiponectin – a Key Adipokine in the Metabolic Syndrome ». Diabetes, Obesity and Metabolism 8, nᵒ 3 (2006): 264‑80. https://doi.org/10.1111/j.1463-1326.2005.00510.x.
  4. 4.0 4.1 Yamauchi, Toshimasa, Junji Kamon, Yusuke Ito, Atsushi Tsuchida, Takehiko Yokomizo, Shunbun Kita, Takuya Sugiyama, et al. « Cloning of adiponectin receptors that mediate antidiabetic metabolic effects ». Nature 423, nᵒ 6941 (1 juin 2003): 762‑69. https://doi.org/10.1038/nature01705.
  5. 5.0 5.1 5.2 5.3 5.4 5.5 Takashi Kadowaki and Toshimasa Yamauchi et al. « Adiponectin and adiponectin receptors». 2015 https://www.ncbi.nlm.nih.gov/pubmed/15897298
  6. 6.0 6.1 6.2 Parker-Duffen JL, Nakamura K, Silver M, Zuriaga MA, MacLauchlan S, Aprahamian TR, Walsh K et al. «Divergent roles for adiponectin receptor 1 (AdipoR1) and AdipoR2 in mediating revascularization and metabolic dysfunction in vivo.» 17 April 2014 : https://www.ncbi.nlm.nih.gov/pubmed/24742672
  7. Kosel D, Heiker JT, Juhl C, Wottawah CM, Blüher M, Mörl K, Beck-Sickinger AG et al. « Dimerization of adiponectin 1 is inhibited by adiponectin » Journal of Cell Science 123, 1320-1328 (2010) : https://www.ncbi.nlm.nih.gov/pubmed/20332107
  8. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  9. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools