Sandbox Reserved 1109
From Proteopedia
(Difference between revisions)
| Line 3: | Line 3: | ||
<StructureSection load='6flt' size='340' side='right'caption='[[6flt]], [[Resolution|resolution]] 3.42Å' scene=''> | <StructureSection load='6flt' size='340' side='right'caption='[[6flt]], [[Resolution|resolution]] 3.42Å' scene=''> | ||
| - | α-synuclein is a protein encoded by the SNCA gene in humans and belongs to the family of synuclein proteins that also consist of beta and gamma- synuclein. It is present in large quantities in the brain and in comparatively smaller quantities in other tissues in the body. α-synuclein is mainly present at the presynaptic terminals in the neuronal mitochondria and comprises of 1% of the total cytosolic protein in the nervous system. It is mainly related to neurodegenerative diseases in humans<ref>DOI 10.1016/j.neuron.2013.09.004</ref>. | + | α-synuclein is a protein encoded by the SNCA gene in humans and belongs to the family of synuclein proteins that also consist of beta and gamma- synuclein. It is present in large quantities in the brain and in comparatively smaller quantities in other tissues in the body. α-synuclein is mainly present at the presynaptic terminals in the neuronal mitochondria and comprises of 1% of the total cytosolic protein in the nervous system. It is mainly related to neurodegenerative diseases in humans <ref>DOI 10.1016/j.neuron.2013.09.004</ref>. |
== Function == | == Function == | ||
| - | Even though it is well known that the aggregation of this protein is related to neurodegenerative disorders, the regular function of the protein is not well understood. However, the literature suggests that there exists a strong genetic link between the protein and degeneration that arises from the loss of certain chaperone proteins, called presynaptic chaperone cysteine string proteins (CSPα). This loss of CSPα does not affect the transmission of the neuronal signals immediately but progresses with time. Excessive expression of α-synuclein is noted to delay degeneration that happens due to loss of CSPα, thus giving α-synuclein a chaperone-like function where this protein works with the CSPα in the assembly of the SNARE complex, which is a type of large protein complex that deals with the fusion synaptic vesicles with the neurons in the brain. Therefore it is said that the main function of the α-synuclein is to regulate the neurotransmitter release <ref>DOI 10. | + | Even though it is well known that the aggregation of this protein is related to neurodegenerative disorders, the regular function of the protein is not well understood. However, the literature suggests that there exists a strong genetic link between the protein and degeneration that arises from the loss of certain chaperone proteins, called presynaptic chaperone cysteine string proteins (CSPα). This loss of CSPα does not affect the transmission of the neuronal signals immediately but progresses with time. Excessive expression of α-synuclein is noted to delay degeneration that happens due to loss of CSPα, thus giving α-synuclein a chaperone-like function where this protein works with the CSPα in the assembly of the SNARE complex, which is a type of large protein complex that deals with the fusion synaptic vesicles with the neurons in the brain. Therefore it is said that the main function of the α-synuclein is to regulate the neurotransmitter release <ref>DOI 10.1016/j.neuron.2013.09.004</ref>. |
Revision as of 16:00, 17 January 2020
| This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
α-synuclein
| |||||||||||
References
- ↑ Bendor JT, Logan TP, Edwards RH. The function of alpha-synuclein. Neuron. 2013 Sep 18;79(6):1044-66. doi: 10.1016/j.neuron.2013.09.004. PMID:24050397 doi:http://dx.doi.org/10.1016/j.neuron.2013.09.004
- ↑ Bendor JT, Logan TP, Edwards RH. The function of alpha-synuclein. Neuron. 2013 Sep 18;79(6):1044-66. doi: 10.1016/j.neuron.2013.09.004. PMID:24050397 doi:http://dx.doi.org/10.1016/j.neuron.2013.09.004
- ↑ Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
- ↑ Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR, Shin WS, Boyer DR, Ye S, Eisenberg DS, Zhou ZH, Jiang L. Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun. 2018 Sep 6;9(1):3609. doi: 10.1038/s41467-018-05971-2. PMID:30190461 doi:http://dx.doi.org/10.1038/s41467-018-05971-2
- ↑ Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
- ↑ Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
- ↑ Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
- ↑ Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR, Shin WS, Boyer DR, Ye S, Eisenberg DS, Zhou ZH, Jiang L. Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun. 2018 Sep 6;9(1):3609. doi: 10.1038/s41467-018-05971-2. PMID:30190461 doi:http://dx.doi.org/10.1038/s41467-018-05971-2
- ↑ (https://www.parkinson.org/Understanding-Parkinsons/Statistics)
- ↑ https://doi.org/10.1038/35081564
- ↑ Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol. 1998 Apr;152(4):879-84. PMID:9546347
- ↑ Wang Y, Shi M, Chung KA, Zabetian CP, Leverenz JB, Berg D, Srulijes K, Trojanowski JQ, Lee VM, Siderowf AD, Hurtig H, Litvan I, Schiess MC, Peskind ER, Masuda M, Hasegawa M, Lin X, Pan C, Galasko D, Goldstein DS, Jensen PH, Yang H, Cain KC, Zhang J. Phosphorylated alpha-synuclein in Parkinson's disease. Sci Transl Med. 2012 Feb 15;4(121):121ra20. doi: 10.1126/scitranslmed.3002566. PMID:22344688 doi:http://dx.doi.org/10.1126/scitranslmed.3002566
- ↑ Stefanis L. alpha-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med. 2012 Feb;2(2):a009399. doi:, 10.1101/cshperspect.a009399. PMID:22355802 doi:http://dx.doi.org/10.1101/cshperspect.a009399
