Sandbox Reserved 1109
From Proteopedia
(Difference between revisions)
(Undo revision 3144267 by Bachar Almazloum (Talk)) |
|||
| Line 19: | Line 19: | ||
== Clinical Significance == | == Clinical Significance == | ||
| - | + | Parkinson's disease (PD) is the most common neurodegenerative disorder affecting more than 10 Million Worldwide <ref>(https://www.parkinson.org/Understanding-Parkinsons/Statistics)</ref>. One of the main characteristics of Neurodegenerative disorders is the loss of the protective capacity surrounding the neurons or the gain of the toxic proteins. The mechanism by which the neuronal damage occurs is due to specific mutations, or other alterations of the synaptic proteins. Recently, it has been found that α-synuclein protein is the main component of Lewy bodies and Lewy neurites which are defining pathological characteristics of all Parkinson's disease cases.<ref>https://doi.org/10.1038/35081564</ref>. | |
==Mechanism of aggregation== | ==Mechanism of aggregation== | ||
| - | Parkinson's disease is characterized by the accumulation of Lewy bodies in the substantia nigra, a region in the midbrain responsible for motor control, where Lewy bodies contain a build-up of α-synuclein found within the cells that contribute to the disease <ref>PMID: 9546347</ref>. Lewy Bodies are cytoplasmic inclusion made of primarily α-synuclein protein, and may also contain other proteins such as; ubiquitin, Tau proteins. The structure of α-synuclein; N-terminal domain, C-terminal domain, and a hydrophobic core (NAC) suggests an aggregation pathway due to the unfolded nature of the protein. A recent study published by Science Translational Medicine Journal, suggests that a covalent modification such as Serine-129 phosphorylation in α-synuclein, as well as hydrophobic interactions specifically located at the NAC domain of α-synuclein, allows for the polymerization of different α-synuclein protein into an anti-parallel β-sheet conformation permitting the formation of fibrils. | + | Parkinson's disease is characterized by the accumulation of Lewy bodies in the substantia nigra, a region in the midbrain responsible for motor control, where Lewy bodies contain a build-up of α-synuclein found within the cells that contribute to the disease <ref>PMID: 9546347</ref>. Lewy Bodies are cytoplasmic inclusion made of primarily α-synuclein protein, and may also contain other proteins such as; ubiquitin, Tau proteins. The structure of α-synuclein; N-terminal domain, C-terminal domain, and a hydrophobic core (NAC) suggests an aggregation pathway due to the unfolded nature of the protein. A recent study published by the in Science Translational Medicine Journal, suggests that a covalent modification such as Serine-129 phosphorylation in α-synuclein, as well as hydrophobic interactions specifically located at the NAC domain of α-synuclein, allows for the polymerization of different α-synuclein protein into an anti-parallel β-sheet conformation permitting the formation of fibrils. The role of α-synuclein in the pathogenesis of PD is mediated through the formation of the 58-83 KD complex that contains α-synuclein and 14-3-3 protein, which inhibits BCL-BAD protein complex responsible for the inhibition of Apoptosis. However, it is important to know that the pathway discussed above is one of many hypotheses for the role of α-synuclein in Parkinson's Disease (PD).<ref>doi: 10.1126/scitranslmed.3002566</ref> |
== Relevance == | == Relevance == | ||
| - | Besides being of key importance in reducing the degeneration caused due to the loss of CSPα, the α-synuclein is also believed to be related to various other proteins that regulate its activity. An example of this is the interaction of synuclein with synphilin that promotes its aggregation, the details of this interaction however are still not clear. Recent studies also suggest that a small protein GTPase rab3a is believed to be regulating the association of the protein to the membrane dependent on GTP, but the mechanism of this regulation is not unclear as the function of the α-synuclein is not totally understood. α-synuclein is also believed to have an impact on protein degradation, cytoskeletal interrelations and complex 1 inhibition in mitochondria inducing oxidative stress that results in neuronal death. It also plays an important role in | + | Besides being of key importance in reducing the degeneration caused due to the loss of CSPα, the α-synuclein is also believed to be related to various other proteins that regulate its activity. An example of this is the interaction of synuclein with synphilin that promotes its aggregation, the details of this interaction however are still not clear. Recent studies also suggest that a small protein GTPase rab3a is believed to be regulating the association of the protein to the membrane dependent on GTP, but the mechanism of this regulation is not unclear as the function of the α-synuclein is not totally understood. α-synuclein is also believed to have an impact on protein degradation, cytoskeletal interrelations and complex 1 inhibition in mitochondria inducing oxidative stress that results in neuronal death. It also plays an important role in regulation of dopamine neurotransmission. Therefore, owing to the role that this protein plays, especially in neurodegenerative disorders, various therapeutic measures related to this protein are being studied.<ref>doi: 10.1101/cshperspect.a009399</ref> |
Revision as of 19:28, 17 January 2020
| This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
α-synuclein
| |||||||||||
References
- ↑ Bendor JT, Logan TP, Edwards RH. The function of alpha-synuclein. Neuron. 2013 Sep 18;79(6):1044-66. doi: 10.1016/j.neuron.2013.09.004. PMID:24050397 doi:http://dx.doi.org/10.1016/j.neuron.2013.09.004
- ↑ Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
- ↑ Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR, Shin WS, Boyer DR, Ye S, Eisenberg DS, Zhou ZH, Jiang L. Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun. 2018 Sep 6;9(1):3609. doi: 10.1038/s41467-018-05971-2. PMID:30190461 doi:http://dx.doi.org/10.1038/s41467-018-05971-2
- ↑ Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
- ↑ Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
- ↑ Guerrero-Ferreira R, Taylor NMI, Mona D, Ringler P, Lauer ME, Riek R, Britschgi M, Stahlberg H. Cryo-EM structure of alpha-synuclein fibrils. Elife. 2018 Jul 3;7. pii: 36402. doi: 10.7554/eLife.36402. PMID:29969391 doi:http://dx.doi.org/10.7554/eLife.36402
- ↑ Li B, Ge P, Murray KA, Sheth P, Zhang M, Nair G, Sawaya MR, Shin WS, Boyer DR, Ye S, Eisenberg DS, Zhou ZH, Jiang L. Cryo-EM of full-length alpha-synuclein reveals fibril polymorphs with a common structural kernel. Nat Commun. 2018 Sep 6;9(1):3609. doi: 10.1038/s41467-018-05971-2. PMID:30190461 doi:http://dx.doi.org/10.1038/s41467-018-05971-2
- ↑ Bendor JT, Logan TP, Edwards RH. The function of alpha-synuclein. Neuron. 2013 Sep 18;79(6):1044-66. doi: 10.1016/j.neuron.2013.09.004. PMID:24050397 doi:http://dx.doi.org/10.1016/j.neuron.2013.09.004
- ↑ Nemani VM, Lu W, Berge V, Nakamura K, Onoa B, Lee MK, Chaudhry FA, Nicoll RA, Edwards RH. Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron. 2010 Jan 14;65(1):66-79. doi: 10.1016/j.neuron.2009.12.023. PMID:20152114 doi:http://dx.doi.org/10.1016/j.neuron.2009.12.023
- ↑ (https://www.parkinson.org/Understanding-Parkinsons/Statistics)
- ↑ https://doi.org/10.1038/35081564
- ↑ Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies. Am J Pathol. 1998 Apr;152(4):879-84. PMID:9546347
- ↑ Wang Y, Shi M, Chung KA, Zabetian CP, Leverenz JB, Berg D, Srulijes K, Trojanowski JQ, Lee VM, Siderowf AD, Hurtig H, Litvan I, Schiess MC, Peskind ER, Masuda M, Hasegawa M, Lin X, Pan C, Galasko D, Goldstein DS, Jensen PH, Yang H, Cain KC, Zhang J. Phosphorylated alpha-synuclein in Parkinson's disease. Sci Transl Med. 2012 Feb 15;4(121):121ra20. doi: 10.1126/scitranslmed.3002566. PMID:22344688 doi:http://dx.doi.org/10.1126/scitranslmed.3002566
- ↑ Stefanis L. alpha-Synuclein in Parkinson's disease. Cold Spring Harb Perspect Med. 2012 Feb;2(2):a009399. doi:, 10.1101/cshperspect.a009399. PMID:22355802 doi:http://dx.doi.org/10.1101/cshperspect.a009399
