6pto
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Structure of Ctf4 trimer in complex with three CMG helicases== | ==Structure of Ctf4 trimer in complex with three CMG helicases== | ||
- | < | + | <SX load='6pto' size='340' side='right' viewer='molstar' caption='[[6pto]], [[Resolution|resolution]] 7.00Å' scene=''> |
== Structural highlights == | == Structural highlights == | ||
<table><tr><td colspan='2'>[[6pto]] is a 36 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PTO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6PTO FirstGlance]. <br> | <table><tr><td colspan='2'>[[6pto]] is a 36 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_18824 Atcc 18824]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6PTO OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6PTO FirstGlance]. <br> | ||
Line 10: | Line 10: | ||
</table> | </table> | ||
== Function == | == Function == | ||
- | [[http://www.uniprot.org/uniprot/CDC45_YEAST CDC45_YEAST]] Required for initiation of chromosomal DNA replication. Acts at the origin of replication. Also has a role in minichromosome maintenance.<ref>PMID:8901577</ref> <ref>PMID:9001208</ref> [[http://www.uniprot.org/uniprot/MCM6_YEAST MCM6_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for the entry in S phase and for cell division.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/PSF2_YEAST PSF2_YEAST]] Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery.<ref>PMID:12730134</ref> [[http://www.uniprot.org/uniprot/MCM2_YEAST MCM2_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM4_YEAST MCM4_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for S phase execution.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM7_YEAST MCM7_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.<ref>PMID:19896182</ref> <ref>PMID:19910535 | + | [[http://www.uniprot.org/uniprot/CDC45_YEAST CDC45_YEAST]] Required for initiation of chromosomal DNA replication. Acts at the origin of replication. Also has a role in minichromosome maintenance.<ref>PMID:8901577</ref> <ref>PMID:9001208</ref> [[http://www.uniprot.org/uniprot/MCM6_YEAST MCM6_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for the entry in S phase and for cell division.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/PSF2_YEAST PSF2_YEAST]] Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery.<ref>PMID:12730134</ref> [[http://www.uniprot.org/uniprot/MCM2_YEAST MCM2_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM4_YEAST MCM4_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Required for S phase execution.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/PSF1_YEAST PSF1_YEAST]] Required for DNA replication. Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery. Required for the chromatin binding of CDC45.<ref>PMID:12730134</ref> [[http://www.uniprot.org/uniprot/MCM7_YEAST MCM7_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/MCM3_YEAST MCM3_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity. Necessary for cell growth.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/CTF4_YEAST CTF4_YEAST]] Accessory factor for DNA replication. It plays a role in accurately duplicating the genome in vivo. [[http://www.uniprot.org/uniprot/PSF3_YEAST PSF3_YEAST]] Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery.[UniProtKB:P40359]<ref>PMID:12730134</ref> [[http://www.uniprot.org/uniprot/MCM5_YEAST MCM5_YEAST]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity; specifically the MCM2-MCM5 association is proposed to be reversible and to mediate a open ring conformation which may facilitate DNA loading. Once loaded onto DNA, double hexamers can slide on dsDNA in the absence of ATPase activity.<ref>PMID:19896182</ref> <ref>PMID:19910535</ref> [[http://www.uniprot.org/uniprot/SLD5_YEAST SLD5_YEAST]] Required for DNA replication. Functions as part of the GINS complex which plays an essential role in the initiation of DNA replication by binding to DNA replication origins and facilitating the assembly of the DNA replication machinery.<ref>PMID:12730134</ref> [UniProtKB:P40359] |
<div style="background-color:#fffaf0;"> | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Line 23: | Line 23: | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
- | </ | + | </SX> |
[[Category: Atcc 18824]] | [[Category: Atcc 18824]] | ||
[[Category: DNA helicase]] | [[Category: DNA helicase]] |
Revision as of 23:26, 6 March 2020
Structure of Ctf4 trimer in complex with three CMG helicases
|
Categories: Atcc 18824 | DNA helicase | Large Structures | Bai, L | Donnell, M | Georgescu, R | Li, H | Santos, R | Yuan, Z | Cmg-ctf4 | Cryo-em | Dna replication | Replication