6kw3
From Proteopedia
Line 3: | Line 3: | ||
<SX load='6kw3' size='340' side='right' viewer='molstar' caption='[[6kw3]], [[Resolution|resolution]] 7.13Å' scene=''> | <SX load='6kw3' size='340' side='right' viewer='molstar' caption='[[6kw3]], [[Resolution|resolution]] 7.13Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6kw3]] is a 28 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog] and [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6KW3 OCA]. For a <b>guided tour on the structure components</b> use [http:// | + | <table><tr><td colspan='2'>[[6kw3]] is a 28 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog] and [http://en.wikipedia.org/wiki/Baker's_yeast Baker's yeast]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6KW3 OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6KW3 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">XELAEV_18028549mg ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), hist1h2aj, LOC494591, XELAEV_18003602mg ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog])</td></tr> | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">XELAEV_18028549mg ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog]), hist1h2aj, LOC494591, XELAEV_18003602mg ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA_helicase DNA helicase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.12 3.6.4.12] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA_helicase DNA helicase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.6.4.12 3.6.4.12] </span></td></tr> | ||
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http:// | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6kw3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6kw3 OCA], [http://pdbe.org/6kw3 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6kw3 RCSB], [http://www.ebi.ac.uk/pdbsum/6kw3 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6kw3 ProSAT]</span></td></tr> |
</table> | </table> | ||
== Function == | == Function == |
Revision as of 02:32, 11 April 2020
The ClassA RSC-Nucleosome Complex
Structural highlights
Function[RSC9_YEAST] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit plays a role in transcriptional response to stress. It is involved in both repression and activation of mRNAs regulated by the target of rapamycin (TOR) kinases, and in the synthesis of rRNA.[1] [2] [3] [4] [5] [6] [7] [ARP9_YEAST] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in transcriptional regulation. Heterodimer of ARP9 and ARP7 functions with HMG box proteins to facilitate proper chromatin architecture. Heterodimer formation is necessary for assembly into RSC complex. Part of the SWI/SNF complex, an ATP-dependent chromatin remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors.[8] [9] [10] [11] [12] [13] [14] [15] [ARP7_YEAST] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in transcriptional regulation. Heterodimer of ARP7 and ARP9 functions with HMG box proteins to facilitate proper chromatin architecture. Heterodimer formation is necessary for assembly into RSC complex. Part of the SWI/SNF complex, an ATP-dependent chromatin remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors.[16] [17] [18] [19] [20] [21] [22] [23] [H32_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [RSC3_YEAST] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is required for transcription of ribosomal protein genes and genes involved in the integrity of the cell wall, and also for proper metaphase progression. Together with HTL1, LDB7, NPL6, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.[24] [25] [26] [27] [28] [29] [30] [31] [H4_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [RSC4_YEAST] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton.[32] [33] [34] [35] [36] [37] [SFH1_YEAST] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and required for cell cycle progression.[38] [39] [40] [41] [42] [43] [44] [RSC30_YEAST] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is required for transcription of ribosomal protein genes and genes involved in the integrity of the cell wall. Together with HTL1, LDB7, NPL6, RSC3 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.[45] [46] [47] [48] [49] [50] [51] [52] [STH1_YEAST] Catalytic component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is the essential ATPase of the complex. It is a DNA translocase capable of nucleosome remodeling. Required for full expression of early meiotic genes. Essential for mitotic growth and repression of CHA1 expression. Also involved in G2 phase control.[53] [54] [55] [56] [57] [58] [59] [60] [RSC7_YEAST] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. Together with HTL1, LDB7, RSC3, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity. Acidic protein important for nuclear protein localization.[61] [RSC6_YEAST] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and suppresses formamide sensitivity of the RSC8 mutants.[62] [63] [64] [65] [66] [67] [68] [RSC58_YEAST] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton.[69] [70] [71] [72] [73] [74] [HTL1_YEAST] Required for cell cycle progression through G2/M transition at temperatures higher than 33 degrees Celsius. Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. When associated with the RSC complex, may act coordinately with PKC1 to regulate G2/M transition. Together with LDB7, NPL6, RSC3, RSC30 components, defines a fungal-specific module within the RSC complex that plays a role in many cellular functions including the maintenance of cell wall integrity.[75] [76] [77] [A0A1L8G0X3_XENLA] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.[RuleBase:RU000528][SAAS:SAAS00581158] [RT102_YEAST] Probable component of the chromatin structure-remodeling complex (RSC) which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. Probable component of the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, is required for the positive and negative regulation of gene expression of a large number of genes. It changes chromatin structure by altering DNA-histone contacts within a nucleosome, leading eventually to a change in nucleosome position, thus facilitating or repressing binding of gene-specific transcription factors. [RSC8_YEAST] Component of the chromatin structure-remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is essential for mitotic growth and for repression of CHA1 expression.[78] [79] [80] [81] [82] [83] [84] [RSC2_YEAST] Component of the chromatin structure remodeling complex (RSC), which is involved in transcription regulation and nucleosome positioning. RSC is responsible for the transfer of a histone octamer from a nucleosome core particle to naked DNA. The reaction requires ATP and involves an activated RSC-nucleosome intermediate. Remodeling reaction also involves DNA translocation, DNA twist and conformational change. As a reconfigurer of centromeric and flanking nucleosomes, RSC complex is required both for proper kinetochore function in chromosome segregation and, via a PKC1-dependent signaling pathway, for organization of the cellular cytoskeleton. This subunit is involved in meiotic sporulation through regulating IME2 expression, and is also essential for 2-micron plasmid maintenance and for normal REP1 protein localization.[85] [86] [87] [88] [89] [90] [91] [92] Publication Abstract from PubMedThe RSC complex remodels chromatin structure and regulates gene transcription. We report the cryoEM structure of yeast RSC bound to the nucleosome. RSC is delineated into the ATPase motor, the actin-related-protein (ARP) module, and the substrate-recruitment module (SRM). RSC binds the nucleosome mainly through the motor, with the auxiliary subunit Sfh1 engaging the H2A-H2B acidic patch to enable nucleosome ejection. SRM is organized into three substrate-binding lobes poised to bind their respective nucleosomal epitopes. The relative orientations of the SRM and the motor on the nucleosome explain the directionality of DNA translocation and promoter nucleosome repositioning by RSC. Together, our findings shed light on RSC assembly and functionality, and provide a framework to understand the mammalian homologs BAF/PBAF and the Sfh1 ortholog INI1/BAF47, which are frequently mutated in cancers. Structure of the RSC complex bound to the nucleosome.,Ye Y, Wu H, Chen K, Clapier CR, Verma N, Zhang W, Deng H, Cairns BR, Gao N, Chen Z Science. 2019 Oct 31. pii: science.aay0033. doi: 10.1126/science.aay0033. PMID:31672915[93] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|