| Structural highlights
Disease
[TBP_HUMAN] Defects in TBP are the cause of spinocerebellar ataxia type 17 (SCA17) [MIM:607136]. Spinocerebellar ataxia is a clinically and genetically heterogeneous group of cerebellar disorders. Patients show progressive incoordination of gait and often poor coordination of hands, speech and eye movements, due to degeneration of the cerebellum with variable involvement of the brainstem and spinal cord. SCA17 is an autosomal dominant cerebellar ataxia (ADCA) characterized by widespread cerebral and cerebellar atrophy, dementia and extrapyramidal signs. The molecular defect in SCA17 is the expansion of a CAG repeat in the coding region of TBP. Longer expansions result in earlier onset and more severe clinical manifestations of the disease.[1] [2] [3] [TAF1_HUMAN] Defects in TAF1 are the cause of dystonia type 3 (DYT3) [MIM:314250]; also called X-linked dystonia-parkinsonism (XDP). DYT3 is a X-linked dystonia-parkinsonism disorder. Dystonia is defined by the presence of sustained involuntary muscle contractions, often leading to abnormal postures. DYT3 is characterized by severe progressive torsion dystonia followed by parkinsonism. Its prevalence is high in the Philippines. DYT3 has a well-defined pathology of extensive neuronal loss and mosaic gliosis in the striatum (caudate nucleus and putamen) which appears to resemble that in Huntington disease.[4] [5]
Function
[TAF9_HUMAN] Essential for cell viability. TAF9 and TAF9B are involved in transcriptional activation as well as repression of distinct but overlapping sets of genes. May have a role in gene regulation associated with apoptosis. TAFs are components of the transcription factor IID (TFIID) complex, the TBP-free TAFII complex (TFTC), the PCAF histone acetylase complex and the STAGA transcription coactivator-HAT complex. TFIID or TFTC are essential for the regulation of RNA polymerase II-mediated transcription.[6] [TBP_HUMAN] General transcription factor that functions at the core of the DNA-binding multiprotein factor TFIID. Binding of TFIID to the TATA box is the initial transcriptional step of the pre-initiation complex (PIC), playing a role in the activation of eukaryotic genes transcribed by RNA polymerase II. Component of the transcription factor SL1/TIF-IB complex, which is involved in the assembly of the PIC (preinitiation complex) during RNA polymerase I-dependent transcription. The rate of PIC formation probably is primarily dependent on the rate of association of SL1 with the rDNA promoter. SL1 is involved in stabilization of nucleolar transcription factor 1/UBTF on rDNA.[7] [TAF4_HUMAN] Makes part of TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. Potentiates transcriptional activation by the AF-2S of the retinoic acid, vitamin D3 and thyroid hormone. [TAF10_HUMAN] TAFs are components of the transcription factor IID (TFIID) complex, PCAF histone acetylase complex and TBP-free TAFII complex (TFTC). TIIFD is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. [TAF12_HUMAN] TAFs are components of the transcription factor IID (TFIID) complex, PCAF histone acetylase complex and TBP-free TAFII complex (TFTC). TAFs components-TIIFD are essential for mediating regulation of RNA polymerase transcription. [TAF3_HUMAN] Transcription factor TFIID is one of the general factors required for accurate and regulated initiation by RNA polymerase II. TFIID is a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. Required in complex with TBPL2 for the differentiation of myoblasts into myocytes. The complex replaces TFIID at specific promoters at an early stage in the differentiation process. [TAF11_HUMAN] Core TAFII present in both of the previously described TFIID species which either lack or contain TAFII30 (TFIID alpha and TFIID beta respectively). [TAF5_HUMAN] TAFs are components of the transcription factor IID (TFIID) complex, PCAF histone acetylase complex and TBP-free TAFII complex (TFTC). TAFs components-TIIFD are essential for mediating regulation of RNA polymerase transcription. TAF5/TAFII100 interacts strongly with the histone H4-related TAF6/TAFII80 and the histone H3-related TAF9/TAFII31, as well as a stable complex comprised of both TAF5/TAFII80 and TAF6/TAFII31. Apparently weaker interactions of TAF5/TAFII100 with TBP, TAF1/TAFII250, TAF11/TAFII28, and TAF12/TAFII20, but not TAF7/TAFII55, also have been observed. [TAF1_HUMAN] Largest component and core scaffold of the TFIID basal transcription factor complex. Contains novel N- and C-terminal Ser/Thr kinase domains which can autophosphorylate or transphosphorylate other transcription factors. Phosphorylates TP53 on 'Thr-55' which leads to MDM2-mediated degradation of TP53. Phosphorylates GTF2A1 and GTF2F1 on Ser residues. Possesses DNA-binding activity. Essential for progression of the G1 phase of the cell cycle.[8] [9] [10] [11] [12] [13] [14] [TAF13_HUMAN] TFIID beta-specific TAFII. [TAF6_HUMAN] TAFs are components of the transcription factor IID (TFIID) complex, PCAF histone acetylase complex and TBP-free TAFII complex (TFTC). TIIFD is multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors.
Publication Abstract from PubMed
The general transcription factor IID (TFIID) is a critical component of the eukaryotic transcription preinitiation complex (PIC) and is responsible for recognizing the core promoter DNA and initiating PIC assembly. We used cryo-electron microscopy (cryo-EM), chemical crosslinking-mass spectrometry (CX-MS) and biochemical reconstitution to determine the complete molecular architecture of TFIID and define the conformational landscape of TFIID in the process of TATA-box binding protein (TBP) loading onto promoter DNA. Our structural analysis revealed five structural states of TFIID in the presence of TFIIA and promoter DNA, showing that the initial binding of TFIID to the downstream promoter positions the upstream DNA and facilitates scanning of TBP for a TATA-box and the subsequent engagement of the promoter. Our findings provide a mechanistic model for the specific loading of TBP by TFIID onto the promoter.
Structure of human TFIID and mechanism of TBP loading onto promoter DNA.,Patel AB, Louder RK, Greber BJ, Grunberg S, Luo J, Fang J, Liu Y, Ranish J, Hahn S, Nogales E Science. 2018 Nov 15. pii: science.aau8872. doi: 10.1126/science.aau8872. PMID:30442764[15]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Zuhlke C, Hellenbroich Y, Dalski A, Kononowa N, Hagenah J, Vieregge P, Riess O, Klein C, Schwinger E. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet. 2001 Mar;9(3):160-4. PMID:11313753 doi:10.1038/sj.ejhg.5200617
- ↑ Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001 Jul 1;10(14):1441-8. PMID:11448935
- ↑ Silveira I, Miranda C, Guimaraes L, Moreira MC, Alonso I, Mendonca P, Ferro A, Pinto-Basto J, Coelho J, Ferreirinha F, Poirier J, Parreira E, Vale J, Januario C, Barbot C, Tuna A, Barros J, Koide R, Tsuji S, Holmes SE, Margolis RL, Jardim L, Pandolfo M, Coutinho P, Sequeiros J. Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Arch Neurol. 2002 Apr;59(4):623-9. PMID:11939898
- ↑ Nolte D, Niemann S, Muller U. Specific sequence changes in multiple transcript system DYT3 are associated with X-linked dystonia parkinsonism. Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10347-52. Epub 2003 Aug 19. PMID:12928496 doi:http://dx.doi.org/10.1073/pnas.1831949100
- ↑ Makino S, Kaji R, Ando S, Tomizawa M, Yasuno K, Goto S, Matsumoto S, Tabuena MD, Maranon E, Dantes M, Lee LV, Ogasawara K, Tooyama I, Akatsu H, Nishimura M, Tamiya G. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet. 2007 Mar;80(3):393-406. Epub 2007 Jan 23. PMID:17273961 doi:S0002-9297(07)60089-5
- ↑ Frontini M, Soutoglou E, Argentini M, Bole-Feysot C, Jost B, Scheer E, Tora L. TAF9b (formerly TAF9L) is a bona fide TAF that has unique and overlapping roles with TAF9. Mol Cell Biol. 2005 Jun;25(11):4638-49. PMID:15899866 doi:http://dx.doi.org/25/11/4638
- ↑ Friedrich JK, Panov KI, Cabart P, Russell J, Zomerdijk JC. TBP-TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter. J Biol Chem. 2005 Aug 19;280(33):29551-8. Epub 2005 Jun 21. PMID:15970593 doi:10.1074/jbc.M501595200
- ↑ Sekiguchi T, Nohiro Y, Nakamura Y, Hisamoto N, Nishimoto T. The human CCG1 gene, essential for progression of the G1 phase, encodes a 210-kilodalton nuclear DNA-binding protein. Mol Cell Biol. 1991 Jun;11(6):3317-25. PMID:2038334
- ↑ Hisatake K, Hasegawa S, Takada R, Nakatani Y, Horikoshi M, Roeder RG. The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1. Nature. 1993 Mar 11;362(6416):179-81. PMID:8450888 doi:http://dx.doi.org/10.1038/362179a0
- ↑ Dikstein R, Ruppert S, Tjian R. TAFII250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74. Cell. 1996 Mar 8;84(5):781-90. PMID:8625415
- ↑ O'Brien T, Tjian R. Functional analysis of the human TAFII250 N-terminal kinase domain. Mol Cell. 1998 May;1(6):905-11. PMID:9660973
- ↑ Siegert JL, Robbins PD. Rb inhibits the intrinsic kinase activity of TATA-binding protein-associated factor TAFII250. Mol Cell Biol. 1999 Jan;19(1):846-54. PMID:9858607
- ↑ Solow S, Salunek M, Ryan R, Lieberman PM. Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem. 2001 May 11;276(19):15886-92. Epub 2001 Feb 20. PMID:11278496 doi:10.1074/jbc.M009385200
- ↑ Li HH, Li AG, Sheppard HM, Liu X. Phosphorylation on Thr-55 by TAF1 mediates degradation of p53: a role for TAF1 in cell G1 progression. Mol Cell. 2004 Mar 26;13(6):867-78. PMID:15053879
- ↑ Patel AB, Louder RK, Greber BJ, Grunberg S, Luo J, Fang J, Liu Y, Ranish J, Hahn S, Nogales E. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science. 2018 Nov 15. pii: science.aau8872. doi: 10.1126/science.aau8872. PMID:30442764 doi:http://dx.doi.org/10.1126/science.aau8872
|