Sandbox Reserved 1600

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 33: Line 33:
Another potential entry site is related to the a1-4 four-helix bundle of CydB. Therefore, this is called the <scene name='83/838655/Bdoxidase_cydb_pathway/3'>CydB pathway</scene>. In this pathway, Asp25 is thought to be the equivalent of the Glu108 in the CydA pathway <ref name =”Safarian” />. The other residues help facilitate the movement of the proton very similarly to the CydA pathway. There is less known about the CydB pathway, and therefore, the CydA pathway is the most accepted source of protons.
Another potential entry site is related to the a1-4 four-helix bundle of CydB. Therefore, this is called the <scene name='83/838655/Bdoxidase_cydb_pathway/3'>CydB pathway</scene>. In this pathway, Asp25 is thought to be the equivalent of the Glu108 in the CydA pathway <ref name =”Safarian” />. The other residues help facilitate the movement of the proton very similarly to the CydA pathway. There is less known about the CydB pathway, and therefore, the CydA pathway is the most accepted source of protons.
 +
 +
= Overall Reduction Mechanism =
 +
 +
= Structure Similarity to Bd Oxidase found in ''Ecoli'' =
= Structure Similarity to Bd Oxidase found in ''Ecoli'' =

Revision as of 17:18, 15 April 2020

bd oxidase; Geobacillus thermodenitrificans

bd oxidase 5DOQ

Drag the structure with the mouse to rotate

References

  1. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
  3. Junemann S. Cytochrome bd terminal oxidase. Biochim Biophys Acta. 1997 Aug 22;1321(2):107-27. doi:, 10.1016/s0005-2728(97)00046-7. PMID:9332500 doi:http://dx.doi.org/10.1016/s0005-2728(97)00046-7
  4. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol. 2005 Mar;187(6):2020-9. doi: 10.1128/JB.187.6.2020-2029.2005. PMID:15743950 doi:http://dx.doi.org/10.1128/JB.187.6.2020-2029.2005
  5. Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4

Student Contributors

Emma H Harris Carson E MIddlebrook

Personal tools