Sandbox Reserved 1605
From Proteopedia
(Difference between revisions)
Line 18: | Line 18: | ||
Interestingly, the O-channel does not exist in the cytochrome''bd'' oxidase of [https://en.wikipedia.org/wiki/Geobacillus_thermoglucosidasius ''Geobacillus thermodenitrificans'']; instead, oxygen binds directly to the active site<ref name="Safarian2">PMID: 27126043</ref>. The <scene name='83/832931/Cyds/1'>CydS</scene> subunit found in E. coli blocks this alternate oxygen entry site, which allows oxygen to travel through the O-channel<ref name="Safarian">PMID:31604309</ref><ref name="Alexander">PMID:31723136</ref>. The presence of an o-channel affects oxidase activity, as the ''E. coli'' oxidase acts as a "true" oxidase, while the ''G. thermodenitrificans'' bd oxidase contributes more to detoxification<ref name="Alexander">PMID:31723136</ref>. | Interestingly, the O-channel does not exist in the cytochrome''bd'' oxidase of [https://en.wikipedia.org/wiki/Geobacillus_thermoglucosidasius ''Geobacillus thermodenitrificans'']; instead, oxygen binds directly to the active site<ref name="Safarian2">PMID: 27126043</ref>. The <scene name='83/832931/Cyds/1'>CydS</scene> subunit found in E. coli blocks this alternate oxygen entry site, which allows oxygen to travel through the O-channel<ref name="Safarian">PMID:31604309</ref><ref name="Alexander">PMID:31723136</ref>. The presence of an o-channel affects oxidase activity, as the ''E. coli'' oxidase acts as a "true" oxidase, while the ''G. thermodenitrificans'' bd oxidase contributes more to detoxification<ref name="Alexander">PMID:31723136</ref>. | ||
=== Hemes === | === Hemes === | ||
- | Three <scene name='83/832931/Heme/6'>hemes</scene> are present in the CydA subunit. These three hemes form a triangle to maximize subunit stability<ref name="Safarian">PMID:31604309</ref><ref name="Alexander">PMID:31723136</ref><ref name="Safarian2">PMID:27126043</ref>, which is an evolutionary conserved feature across bd oxidases<ref name="Safarian">PMID:31604309</ref>. Heme b<sub>558</sub> acts as the primary electron acceptor by catalyzing the oxidation of quinol<ref name="Alexander">PMID:31723136</ref>. Conserved <scene name='83/832931/Met393/1'>His186 and Met393</scene> help to stabilize heme b558<ref name="Alexander">PMID:31723136</ref>. Heme b<sub>558</sub> transfers the electrons to heme b595, which transfers them to the active site heme d<ref name= "Safarian">PMID:31604309</ref>. A conserved <scene name='83/832931/Trp441/ | + | Three <scene name='83/832931/Heme/6'>hemes</scene> are present in the CydA subunit. These three hemes form a triangle to maximize subunit stability<ref name="Safarian">PMID:31604309</ref><ref name="Alexander">PMID:31723136</ref><ref name="Safarian2">PMID:27126043</ref>, which is an evolutionary conserved feature across bd oxidases<ref name="Safarian">PMID:31604309</ref>. Heme b<sub>558</sub> acts as the primary electron acceptor by catalyzing the oxidation of quinol<ref name="Alexander">PMID:31723136</ref>. Conserved <scene name='83/832931/Met393/1'>His186 and Met393</scene> help to stabilize heme b558<ref name="Alexander">PMID:31723136</ref>. Heme b<sub>558</sub> transfers the electrons to heme b595, which transfers them to the active site heme d<ref name= "Safarian">PMID:31604309</ref>. A conserved <scene name='83/832931/Trp441/6'>Trp441</scene> assists heme b<sub>595</sub> in transferring electrons to heme d<ref name="Safarian2">PMID:27126043</ref>. A conserved <scene name='83/832931/Hemeb595/2'>Glu445</scene> is essential for charge stabilization of heme b<sub>595</sub><ref name="Alexander">PMID:31723136</ref>, while <scene name='83/832931/Hemeh19/3'>His19</scene> stabilizes heme d<ref name="Safarian2">PMID:27126043</ref>. As heme d collects the electrons from heme b<sub>595</sub>, <scene name='83/832931/Heme_d/3'>Glu99</scene> in the O-channel facilities the binding of oxygen to heme d, and <scene name='83/832931/Heme_d/3'>Ser108, Glu107, and Ser140</scene> in the h-channel facilitate proton transfer to heme d<ref name="Safarian">PMID:31604309</ref>. Similar to the three hemes, the <scene name='83/832931/Uq8/3'>ubiquinone-8</scene> (UQ-8) molecule found in CydB mimics the triangular formation to stabilize the subunit<ref name="Safarian">PMID:31604309</ref>. |
===Mechanism=== | ===Mechanism=== | ||
Quinol is used as the initial electron donor and heme b<sub>558</sub> is the initial electron acceptor. <scene name='83/832931/Heme/6'>Heme b<sub>558</sub></scene> transfers the electrons to <scene name='83/832931/Heme/6'>heme b<sub>595</sub></scene>, which transfers the electrons to <scene name='83/832931/Heme/6'>heme d</scene>. Concurrently, the <scene name='83/832931/Overall_h_channel/1'>H-channel</scene> will collect protons and <scene name='83/832931/O_channel_overall/2'>o-channel</scene> will collect oxygen atoms that will flow to heme d (Fig. 3). With electrons, oxygen, and protons available, heme d can successfully reduce dioxygen to water (Fig. 4). | Quinol is used as the initial electron donor and heme b<sub>558</sub> is the initial electron acceptor. <scene name='83/832931/Heme/6'>Heme b<sub>558</sub></scene> transfers the electrons to <scene name='83/832931/Heme/6'>heme b<sub>595</sub></scene>, which transfers the electrons to <scene name='83/832931/Heme/6'>heme d</scene>. Concurrently, the <scene name='83/832931/Overall_h_channel/1'>H-channel</scene> will collect protons and <scene name='83/832931/O_channel_overall/2'>o-channel</scene> will collect oxygen atoms that will flow to heme d (Fig. 3). With electrons, oxygen, and protons available, heme d can successfully reduce dioxygen to water (Fig. 4). |
Revision as of 23:05, 19 April 2020
This Sandbox is Reserved from Jan 13 through September 1, 2020 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1598 through Sandbox Reserved 1627. |
To get started:
More help: Help:Editing |
Contents |
Cytochrome bd-1 oxidase in Escherichia coli
Introduction
|
References
- ↑ 1.0 1.1 Harikishore A, Chong SSM, Ragunathan P, Bates RW, Gruber G. Targeting the menaquinol binding loop of mycobacterial cytochrome bd oxidase. Mol Divers. 2020 Jan 14. pii: 10.1007/s11030-020-10034-0. doi:, 10.1007/s11030-020-10034-0. PMID:31939065 doi:http://dx.doi.org/10.1007/s11030-020-10034-0
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4
- ↑ 4.0 4.1 4.2 4.3 Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
- ↑ Moosa A, Lamprecht DA, Arora K, Barry CE 3rd, Boshoff HIM, Ioerger TR, Steyn AJC, Mizrahi V, Warner DF. Susceptibility of Mycobacterium tuberculosis Cytochrome bd Oxidase Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome c. Antimicrob Agents Chemother. 2017 Sep 22;61(10). pii: AAC.01338-17. doi:, 10.1128/AAC.01338-17. Print 2017 Oct. PMID:28760899 doi:http://dx.doi.org/10.1128/AAC.01338-17
- ↑ 6.0 6.1 Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, Gillis CC, Buttner L, Smoot MP, Behrendt CL, Cherry S, Santos RL, Hooper LV, Winter SE. Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host Microbe. 2017 Feb 8;21(2):208-219. doi: 10.1016/j.chom.2017.01.005. PMID:28182951 doi:http://dx.doi.org/10.1016/j.chom.2017.01.005
- ↑ 7.0 7.1 Shepherd M, Achard ME, Idris A, Totsika M, Phan MD, Peters KM, Sarkar S, Ribeiro CA, Holyoake LV, Ladakis D, Ulett GC, Sweet MJ, Poole RK, McEwan AG, Schembri MA. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci Rep. 2016 Oct 21;6:35285. doi: 10.1038/srep35285. PMID:27767067 doi:http://dx.doi.org/10.1038/srep35285
- ↑ 8.0 8.1 Arora K, Ochoa-Montano B, Tsang PS, Blundell TL, Dawes SS, Mizrahi V, Bayliss T, Mackenzie CJ, Cleghorn LA, Ray PC, Wyatt PG, Uh E, Lee J, Barry CE 3rd, Boshoff HI. Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014 Nov;58(11):6962-5. doi: 10.1128/AAC.03486-14., Epub 2014 Aug 25. PMID:25155596 doi:http://dx.doi.org/10.1128/AAC.03486-14
- ↑ Galvan AE, Chalon MC, Rios Colombo NS, Schurig-Briccio LA, Sosa-Padilla B, Gennis RB, Bellomio A. Microcin J25 inhibits ubiquinol oxidase activity of purified cytochrome bd-I from Escherichia coli. Biochimie. 2019 May;160:141-147. doi: 10.1016/j.biochi.2019.02.007. Epub 2019 Feb, 19. PMID:30790617 doi:http://dx.doi.org/10.1016/j.biochi.2019.02.007
- ↑ Lu P, Heineke MH, Koul A, Andries K, Cook GM, Lill H, van Spanning R, Bald D. The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Sci Rep. 2015 May 27;5:10333. doi: 10.1038/srep10333. PMID:26015371 doi:http://dx.doi.org/10.1038/srep10333
Student Contributors
- Grace Bassler
- Emily Neal
- Marisa Villarreal