Sandbox Reserved 1600
From Proteopedia
(Difference between revisions)
| Line 48: | Line 48: | ||
The protons that are required in the pathway are not provided by a pump, but rather via intracellular water. The <scene name='83/838655/Bdoxidase_proton_pathways/1'>potential proton pathways</scene> utilize amino acids with charges that help shuttle the protons from the intracellular side of the protein to <scene name='83/838655/Bd_oxidase_heme_b_595/1'>Heme B595</scene>. in the active site. The <scene name='83/838655/Bdoxidase_cyda_pathway_glu108/1'>CydA pathway</scene> passes through the <scene name='83/838655/Bdoxidase_cyda_subunit/2'>CydA subunit</scene>, and is shown in <font color='purple'><b>purple</b></font> in Figure 4. The <scene name='83/838655/Bdoxidase_cydb_pathway/3'>CydB pathway</scene> proceeds through the <scene name='83/838655/Bdoxidase_cydb_subunit/2'>CydB subunit</scene>, and is shown in <font color='green'><b>green</b></font> in Figure 4. | The protons that are required in the pathway are not provided by a pump, but rather via intracellular water. The <scene name='83/838655/Bdoxidase_proton_pathways/1'>potential proton pathways</scene> utilize amino acids with charges that help shuttle the protons from the intracellular side of the protein to <scene name='83/838655/Bd_oxidase_heme_b_595/1'>Heme B595</scene>. in the active site. The <scene name='83/838655/Bdoxidase_cyda_pathway_glu108/1'>CydA pathway</scene> passes through the <scene name='83/838655/Bdoxidase_cyda_subunit/2'>CydA subunit</scene>, and is shown in <font color='purple'><b>purple</b></font> in Figure 4. The <scene name='83/838655/Bdoxidase_cydb_pathway/3'>CydB pathway</scene> proceeds through the <scene name='83/838655/Bdoxidase_cydb_subunit/2'>CydB subunit</scene>, and is shown in <font color='green'><b>green</b></font> in Figure 4. | ||
| - | As shown above, the electrons required for the reduction mechanism come from a ubiquinol molecule (Fig. 2) that simultaneously binds to the <scene name='83/838655/Bdoxidase_q_loop/2'>Q loop</scene> and gets oxidized giving 4e<sup>-</sup> to <scene name='83/838655/Bd_oxidase_heme_558/2'>Heme B558</scene>. Once at Heme B558 the 4e<sup>-</sup> will be shuttled directly to <scene name='83/838655/Bd_oxidase_heme_d/1'>Heme D</scene> to be used in the reduction of O₂. The electron pathway is depicted in <font color='blue'><b>blue</b></font> in Figure 4. | + | As shown above, the electrons required for the reduction mechanism come from a ubiquinol molecule (Fig. 2) that simultaneously binds to the <scene name='83/838655/Bdoxidase_q_loop/2'>Q loop</scene> and gets oxidized giving 4e<sup>-</sup> to <scene name='83/838655/Bd_oxidase_heme_558/2'>Heme B558</scene>. Once at <scene name='83/838655/Bd_oxidase_heme_558/2'>Heme B558</scene> the 4e<sup>-</sup> will be shuttled directly to <scene name='83/838655/Bd_oxidase_heme_d/1'>Heme D</scene> to be used in the reduction of O₂. The electron pathway is depicted in <font color='blue'><b>blue</b></font> in Figure 4. |
When all of these elements of the reduction aggregate in the active site, the protons and electrons are shuttled to <scene name='83/838655/Bd_oxidase_heme_d/1'>Heme D</scene>, where the actual reduction occurs. The 2H₂O molecules are then expelled, as seen in <font color='red'><b>red</b></font> in Figure 4. The shuttling of these electrons and protons also helps assist with the electric chemical potential in the [https://en.wikipedia.org/wiki/Cell_membrane cellular membrane]. | When all of these elements of the reduction aggregate in the active site, the protons and electrons are shuttled to <scene name='83/838655/Bd_oxidase_heme_d/1'>Heme D</scene>, where the actual reduction occurs. The 2H₂O molecules are then expelled, as seen in <font color='red'><b>red</b></font> in Figure 4. The shuttling of these electrons and protons also helps assist with the electric chemical potential in the [https://en.wikipedia.org/wiki/Cell_membrane cellular membrane]. | ||
Revision as of 19:01, 20 April 2020
bd oxidase; Geobacillus thermodenitrificans
| |||||||||||
References
- ↑ Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
- ↑ Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol. 2005 Mar;187(6):2020-9. doi: 10.1128/JB.187.6.2020-2029.2005. PMID:15743950 doi:http://dx.doi.org/10.1128/JB.187.6.2020-2029.2005
- ↑ Junemann S. Cytochrome bd terminal oxidase. Biochim Biophys Acta. 1997 Aug 22;1321(2):107-27. doi:, 10.1016/s0005-2728(97)00046-7. PMID:9332500 doi:http://dx.doi.org/10.1016/s0005-2728(97)00046-7
- ↑ Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011 Nov;1807(11):1398-413. doi:, 10.1016/j.bbabio.2011.06.016. Epub 2011 Jul 1. PMID:21756872 doi:http://dx.doi.org/10.1016/j.bbabio.2011.06.016
- ↑ Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
- ↑ Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4
Student Contributors
Emma H Harris
Carson E Middlebrook
