Sandbox Reserved 1600

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 19: Line 19:
[[Image:Hemes2.png|300 px|right|thumb|Figure 1. The active site of bd oxidase for ''Geobacillus thermodenitrificans''. Heme B558 (pink; left), Heme B595 (pink; right), and Heme D (green). Important residues shown in blue. Measurements are shown in Å.]]
[[Image:Hemes2.png|300 px|right|thumb|Figure 1. The active site of bd oxidase for ''Geobacillus thermodenitrificans''. Heme B558 (pink; left), Heme B595 (pink; right), and Heme D (green). Important residues shown in blue. Measurements are shown in Å.]]
-
The active site for bd oxidase in ''Geobacillus thermodenitrificans'' is located in subunit Cyd A. The site consists of three iron hemes: <scene name='83/838655/Bd_oxidase_heme_558/3'>Heme B558</scene>, <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene>, and <scene name='83/838655/Bd_oxidase_heme_d/2'>Heme D</scene> that are held together in a rigid triangular <scene name='83/838655/Hemes/8'>arrangement</scene> due to [https://en.wikipedia.org/wiki/Van_der_Waals_force Van der Waals interactions].<ref name = ”Safarian” /> The <scene name='83/838655/Hemes_measurements/5'>length</scene> between each heme's central iron is relatively constant which serves to shuttle protons and electrons from one heme to another efficiently (Fig. 1). It is suggested that <scene name='83/838655/Bd_oxidase_heme_558/2'>Heme B558</scene> acts as an electron acceptor, orientated toward the extracellular side by <scene name='83/838655/Bdoxidase_structure_heme/4'>His 186, Met 325, and Lys 252</scene> (Fig. 1).<ref name = ”Safarian” /> With <scene name='83/838655/Bd_oxidase_heme_b_595/1'>Heme B595</scene> closest in proximity to the intracellular side, it is suggested it functions as the proton acceptor with two potential proton pathways. It is then proposed that both <scene name='83/838655/Bd_oxidase_heme_558/2'>Heme B558</scene> and <scene name='83/838655/Bd_oxidase_heme_b_595/1'>Heme B595</scene> shuttle their respective ions directly to <scene name='83/838655/Bd_oxidase_heme_b_595/1'>Heme B595</scene> based on this being the shortest pathway.
+
The active site for bd oxidase in ''Geobacillus thermodenitrificans'' is located in subunit Cyd A. The site consists of three iron hemes: <scene name='83/838655/Bd_oxidase_heme_558/3'>Heme B558</scene>, <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene>, and <scene name='83/838655/Bd_oxidase_heme_d/2'>Heme D</scene> that are held together in a rigid triangular <scene name='83/838655/Hemes/8'>arrangement</scene> due to [https://en.wikipedia.org/wiki/Van_der_Waals_force Van der Waals interactions].<ref name = ”Safarian” /> The <scene name='83/838655/Hemes_measurements/5'>length</scene> between each heme's central iron is relatively constant which serves to shuttle protons and electrons from one heme to another efficiently (Fig. 1). It is suggested that <scene name='83/838655/Bd_oxidase_heme_558/2'>Heme B558</scene> acts as an electron acceptor, orientated toward the extracellular side by <scene name='83/838655/Bdoxidase_structure_heme/4'>His 186, Met 325, and Lys 252</scene> (Fig. 1).<ref name = ”Safarian” /> With <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene> closest in proximity to the intracellular side, it is suggested it functions as the proton acceptor with two potential proton pathways. It is then proposed that both <scene name='83/838655/Bd_oxidase_heme_558/3'>Heme B558</scene> and <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene> shuttle their respective ions directly to <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene> based on this being the shortest pathway.
==Potential Oxygen Entry Site==
==Potential Oxygen Entry Site==
-
<scene name='83/838655/Bd_oxidase_heme_d/1'>Heme D</scene> is the hypothesized spot for the <scene name='83/832926/Potential_oxygen_entry_site/1'>oxygen</scene> to enter the protein. Heme D (shown in <font color='green'><b>green</b></font>) is directly connected to the protein surface on CydA and contains a solvent accessible substrate channel. This channel and accessibility allow for oxygen to easily bind to Heme D and eventually be reduced to two H₂O molecules. This process requires a proton and electron source, both described in the later sections.
+
<scene name='83/838655/Bd_oxidase_heme_d/2'>Heme D</scene> is the hypothesized spot for the <scene name='83/832926/Potential_oxygen_entry_site/1'>oxygen</scene> to enter the protein. Heme D (shown in <font color='green'><b>green</b></font>) is directly connected to the protein surface on CydA and contains a solvent accessible substrate channel. This channel and accessibility allow for oxygen to easily bind to Heme D and eventually be reduced to two H₂O molecules. This process requires a proton and electron source, both described in the later sections.
==Electron Source==
==Electron Source==

Revision as of 23:02, 20 April 2020

Contents

bd oxidase; Geobacillus thermodenitrificans

Introduction

is an integral membrane protein that catalyzes the reduction of oxygen to water using quinol as the reducing substrate.[1] The full reaction is O₂ + 4H+ + 4e- → 2H₂O. The reaction is electrogenic but it is not coupled to a proton pump. Instead, bd oxidase utilizes internal water molecules to provide the four protons needed and an external ubiquinone molecule for the four electrons needed.[2]

There are two main types of respiratory cytochrome oxidases: the heme/copper oxidases and the heme-only cytochrome bd quinol oxidase, which is what bd oxidase falls under.[3] Heme-only cytochrome bd quinol oxidases are associated with microaerobic dioxygen respiration, and they have a high affinity for oxygen.

Cytochrome bd oxidase plays a key role in protecting gram-negative bacteria, more specifically heterotrophs, from high oxidative stress (ie. preventing free radicals in intracellular space in prokaryotes).[4] Other organisms, like humans, have mechanisms that do the same thing but are more intricate due to the organism’s higher levels of complexity.

The Geobacillus thermodenitrificans is a facultative aerobic thermophilic bacterium that utilizes the bd oxidase mechanism. The oxygen enters the enzyme through the selective that funnels the extracellular oxygen to in the active site. The electrons for the reaction are provided by ubiquinone molecule bound to the . The protons for the reaction are provided by one of two , either the or . Both of the proton pathways utilize the intracellular water molecules for the proton source, and shuttle them to .

bd oxidase (PDB: 5doq)

Drag the structure with the mouse to rotate

Biological Importance of O₂ reduction

Oxygen toxicity is a fatal problem among all organisms, but can easily occur in prokaryotes due to their low oxygen tolerance. In prokaryotes, the cytochrome bd oxygen reductases function to quickly reduce the concentration of O₂ into H₂O to protect the cell from detrimental effects. Without proper functioning of these enzymes, or if O₂ concentrations are too high, the concentrations of the intermediates formed from the reduction reaction will increase and can be detrimental. As a result of the vitality of reducing O₂ in prokaryotes, knowledge on bd oxidases can help develop drugs that target these enzymes to combat bacterial infection.[7]

References

  1. Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
  3. Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol. 2005 Mar;187(6):2020-9. doi: 10.1128/JB.187.6.2020-2029.2005. PMID:15743950 doi:http://dx.doi.org/10.1128/JB.187.6.2020-2029.2005
  4. Junemann S. Cytochrome bd terminal oxidase. Biochim Biophys Acta. 1997 Aug 22;1321(2):107-27. doi:, 10.1016/s0005-2728(97)00046-7. PMID:9332500 doi:http://dx.doi.org/10.1016/s0005-2728(97)00046-7
  5. Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
  6. Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4
  7. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011 Nov;1807(11):1398-413. doi:, 10.1016/j.bbabio.2011.06.016. Epub 2011 Jul 1. PMID:21756872 doi:http://dx.doi.org/10.1016/j.bbabio.2011.06.016

Student Contributors

Emma H Harris

Carson E Middlebrook

Personal tools