Sandbox Reserved 1600
From Proteopedia
| Line 19: | Line 19: | ||
[[Image:Hemes2.png|300 px|right|thumb|Figure 1. The active site of bd oxidase for ''Geobacillus thermodenitrificans''. Heme B558 (pink; left), Heme B595 (pink; right), and Heme D (green). Important residues shown in blue. Measurements are shown in Å.]] | [[Image:Hemes2.png|300 px|right|thumb|Figure 1. The active site of bd oxidase for ''Geobacillus thermodenitrificans''. Heme B558 (pink; left), Heme B595 (pink; right), and Heme D (green). Important residues shown in blue. Measurements are shown in Å.]] | ||
| - | The active site for bd oxidase in '' | + | The active site for bd oxidase in ''G. thermodenitrificans'' is located in subunit Cyd A. The site consists of three iron hemes: <scene name='83/838655/Bd_oxidase_heme_558/3'>Heme B558</scene>, <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene>, and <scene name='83/838655/Bd_oxidase_heme_d/2'>Heme D</scene> that are held together in a rigid triangular <scene name='83/838655/Hemes/8'>arrangement</scene> due to [https://en.wikipedia.org/wiki/Van_der_Waals_force Van der Waals interactions].<ref name = ”Safarian” /> The <scene name='83/838655/Hemes_measurements/5'>length</scene> between each heme's central iron is relatively constant which serves to shuttle protons and electrons from one heme to another efficiently (Fig. 1). <scene name='83/838655/Bd_oxidase_heme_558/3'>Heme B558</scene> is hypothesized to act as an electron acceptor, orientated toward the extracellular side by <scene name='83/838655/Bdoxidase_structure_heme/4'>His 186, Met 325, and Lys 252</scene> (Fig. 1).<ref name = ”Safarian” /> With <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene> closest in proximity to the intracellular side, Heme B559 is likely the proton acceptor with two potential proton pathways. Both <scene name='83/838655/Bd_oxidase_heme_558/3'>Heme B558</scene> and <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene> then shuttle their respective ions directly to <scene name='83/838655/Bd_oxidase_heme_b_595/2'>Heme B595</scene> as this is the shortest pathway. |
==Potential Oxygen Entry Site== | ==Potential Oxygen Entry Site== | ||
| Line 26: | Line 26: | ||
==Electron Source== | ==Electron Source== | ||
| - | An electron source is needed in order for the redox reaction of O₂ to occur. Cytochrome bd oxidase uses the quinol molecule [https://en.wikipedia.org/wiki/Coenzyme_Q10 ubiquinone] as an electron donor | + | An electron source is needed in order for the redox reaction of O₂ to occur. Cytochrome bd oxidase uses the quinol molecule [https://en.wikipedia.org/wiki/Coenzyme_Q10 ubiquinone] as an electron donor. [[Image:Ubiquinone.jpg|200 px|right|thumb|Figure 2. Chemical structure of ubiquinone.]] As shown in the <scene name='83/838655/Bdoxidase_structure_full/4'>overall structure</scene> the <scene name='83/838655/Bdoxidase_q_loop/2'>Q loop</scene> is on the extracellular surface and provides a binding site for ubiquinone.<ref name = ”Safarian” /> As mentioned in the Active Site section, Heme <scene name='83/838655/Bdoxidase_qloop_zoom/3'>B558 is closest in proximity to the Q loop</scene> and thus is the suggested [https://en.wikipedia.org/wiki/Electron_acceptor electron acceptor]. This suggestion is further supported by the conservation of <scene name='83/838655/Bdoxidase_trp/2'>Trp374</scene> often found as intermediate electron receptors in biological [https://en.wikipedia.org/wiki/Electron_transport_chain electron transfer chains].<ref name =”Safarian” /> |
==Potential Proton Pathways== | ==Potential Proton Pathways== | ||
Revision as of 00:35, 21 April 2020
Contents |
bd oxidase; Geobacillus thermodenitrificans
Introduction
is an integral membrane protein that catalyzes the reduction of oxygen to water using quinol as the reducing substrate.[1] The full reaction is O₂ + 4H+ + 4e- → 2H₂O. The reaction is electrogenic but it is not coupled to a proton pump. Instead, bd oxidase utilizes internal water molecules to provide the four protons needed and an external ubiquinone molecule for the four electrons needed.[2]
There are two main types of respiratory cytochrome oxidases: the heme/copper oxidases and the heme-only cytochrome bd quinol oxidase, which is what bd oxidase falls under.[3] Heme-only cytochrome bd quinol oxidases are associated with microaerobic dioxygen respiration, and they have a high affinity for oxygen.
Cytochrome bd oxidase plays a key role in protecting gram-negative bacteria, more specifically heterotrophs, from high oxidative stress (ie. preventing free radicals in intracellular space in prokaryotes).[4] Other organisms, like humans, have mechanisms that do the same thing but are more intricate due to the organism’s higher levels of complexity.
The Geobacillus thermodenitrificans is a facultative aerobic thermophilic bacterium that utilizes the bd oxidase mechanism. The oxygen enters the enzyme through the selective that funnels the extracellular oxygen to in the active site. The electrons for the reaction are provided by ubiquinone molecule bound to the . The protons for the reaction are provided by one of two , either the or . Both of the proton pathways utilize the intracellular water molecules for the proton source, and shuttle them to .
| |||||||||||
Biological Importance of O₂ reduction
Oxygen toxicity is a fatal problem among all organisms, but can easily occur in prokaryotes due to their low oxygen tolerance. In prokaryotes, the cytochrome bd oxygen reductases function to quickly reduce the concentration of O₂ into H₂O to protect the cell from detrimental effects. Without proper functioning of these enzymes, or if O₂ concentrations are too high, the concentrations of the intermediates formed from the reduction reaction will increase and can be detrimental. As a result of the vitality of reducing O₂ in prokaryotes, knowledge on bd oxidases can help develop drugs that target these enzymes to combat bacterial infection.[7]
References
- ↑ Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
- ↑ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 Safarian S, Hahn A, Mills DJ, Radloff M, Eisinger ML, Nikolaev A, Meier-Credo J, Melin F, Miyoshi H, Gennis RB, Sakamoto J, Langer JD, Hellwig P, Kuhlbrandt W, Michel H. Active site rearrangement and structural divergence in prokaryotic respiratory oxidases. Science. 2019 Oct 4;366(6461):100-104. doi: 10.1126/science.aay0967. PMID:31604309 doi:http://dx.doi.org/10.1126/science.aay0967
- ↑ Das A, Silaghi-Dumitrescu R, Ljungdahl LG, Kurtz DM Jr. Cytochrome bd oxidase, oxidative stress, and dioxygen tolerance of the strictly anaerobic bacterium Moorella thermoacetica. J Bacteriol. 2005 Mar;187(6):2020-9. doi: 10.1128/JB.187.6.2020-2029.2005. PMID:15743950 doi:http://dx.doi.org/10.1128/JB.187.6.2020-2029.2005
- ↑ Junemann S. Cytochrome bd terminal oxidase. Biochim Biophys Acta. 1997 Aug 22;1321(2):107-27. doi:, 10.1016/s0005-2728(97)00046-7. PMID:9332500 doi:http://dx.doi.org/10.1016/s0005-2728(97)00046-7
- ↑ Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
- ↑ Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4
- ↑ Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. The cytochrome bd respiratory oxygen reductases. Biochim Biophys Acta. 2011 Nov;1807(11):1398-413. doi:, 10.1016/j.bbabio.2011.06.016. Epub 2011 Jul 1. PMID:21756872 doi:http://dx.doi.org/10.1016/j.bbabio.2011.06.016
Student Contributors
Emma H Harris
Carson E Middlebrook
