Sandbox Reserved 1625
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
=== Subunits === | === Subunits === | ||
- | Cytochrome ''bd'' oxidase is made up of four individual subunits.<ref name="Alexander">PMID:31723136</ref> The two major subunits, CydA and CydB, are each composed of one peripheral [https://en.wikipedia.org/wiki/Alpha_helix helix] and two bundles of four [https://en.wikipedia.org/wiki/Transmembrane_protein transmembrane] helices. The <scene name='83/832924/Cyda_subunit/7'>CydA subunit</scene> plays the most important role in the oxygen [https://en.wikipedia.org/wiki/Redox reduction reaction] as it contains the Q-loop as well as all three [https://en.wikipedia.org/wiki/Heme heme] groups. The <scene name='83/832924/Cydb_subunit/4'>CydB subunit</scene> harbors the <scene name='83/832924/Ubiquinone/5'>ubiquinone</scene> molecule which provides structural support to the subunit that mimics the three hemes found in CydA.<ref name="Safarian">PMID: 31604309</ref><ref name="Safarian2">PMID: 27126043</ref> The remaining two subunits, CydS and CydX, are both single helix structures that assist in the oxygen reduction reaction. Unique to ''E. coli'', the <scene name='83/832924/Cyds_subunit/6'>CydS subunit</scene> binds to CydA to block oxygen from directly binding to heme b<sub>595</sub>. The <scene name='83/832924/Cydx_subunit/6'>CydX subunit</scene> promotes the assembly and stability of the oxidase complex. CydX is composed of 37 mostly hydrophilic [https://en.wikipedia.org/wiki/Amino_acid amino acid] residues, including <scene name='83/832924/Glu25/ | + | Cytochrome ''bd'' oxidase is made up of four individual subunits.<ref name="Alexander">PMID:31723136</ref> The two major subunits, CydA and CydB, are each composed of one peripheral [https://en.wikipedia.org/wiki/Alpha_helix helix] and two bundles of four [https://en.wikipedia.org/wiki/Transmembrane_protein transmembrane] helices. The <scene name='83/832924/Cyda_subunit/7'>CydA subunit</scene> plays the most important role in the oxygen [https://en.wikipedia.org/wiki/Redox reduction reaction] as it contains the Q-loop as well as all three [https://en.wikipedia.org/wiki/Heme heme] groups. The <scene name='83/832924/Cydb_subunit/4'>CydB subunit</scene> harbors the <scene name='83/832924/Ubiquinone/5'>ubiquinone</scene> molecule which provides structural support to the subunit that mimics the three hemes found in CydA.<ref name="Safarian">PMID: 31604309</ref><ref name="Safarian2">PMID: 27126043</ref> The remaining two subunits, CydS and CydX, are both single helix structures that assist in the oxygen reduction reaction. Unique to ''E. coli'', the <scene name='83/832924/Cyds_subunit/6'>CydS subunit</scene> binds to CydA to block oxygen from directly binding to heme b<sub>595</sub>. The <scene name='83/832924/Cydx_subunit/6'>CydX subunit</scene> promotes the assembly and stability of the oxidase complex. CydX is composed of 37 mostly hydrophilic [https://en.wikipedia.org/wiki/Amino_acid amino acid] residues, including <scene name='83/832924/Glu25/4'>Glu25</scene> that is exposed to the cytoplasm and prevents the helix from fully entering the membrane. <ref name="Alexander">PMID:31723136</ref> |
===Q-Loop=== | ===Q-Loop=== |
Revision as of 04:27, 21 April 2020
This Sandbox is Reserved from Jan 13 through September 1, 2020 for use in the course CH462 Biochemistry II taught by R. Jeremy Johnson at the Butler University, Indianapolis, USA. This reservation includes Sandbox Reserved 1598 through Sandbox Reserved 1627. |
To get started:
More help: Help:Editing |
Cytochrome bd-1 oxidase in Escherichia coli
|
References
- ↑ 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
- ↑ 2.0 2.1 Harikishore A, Chong SSM, Ragunathan P, Bates RW, Gruber G. Targeting the menaquinol binding loop of mycobacterial cytochrome bd oxidase. Mol Divers. 2020 Jan 14. pii: 10.1007/s11030-020-10034-0. doi:, 10.1007/s11030-020-10034-0. PMID:31939065 doi:http://dx.doi.org/10.1007/s11030-020-10034-0
- ↑ Boot M, Jim KK, Liu T, Commandeur S, Lu P, Verboom T, Lill H, Bitter W, Bald D. A fluorescence-based reporter for monitoring expression of mycobacterial cytochrome bd in response to antibacterials and during infection. Sci Rep. 2017 Sep 6;7(1):10665. doi: 10.1038/s41598-017-10944-4. PMID:28878275 doi:http://dx.doi.org/10.1038/s41598-017-10944-4
- ↑ Belevich I, Borisov VB, Verkhovsky MI. Discovery of the true peroxy intermediate in the catalytic cycle of terminal oxidases by real-time measurement. J Biol Chem. 2007 Sep 28;282(39):28514-9. doi: 10.1074/jbc.M705562200. Epub 2007 , Aug 9. PMID:17690093 doi:http://dx.doi.org/10.1074/jbc.M705562200
- ↑ Giuffre A, Borisov VB, Arese M, Sarti P, Forte E. Cytochrome bd oxidase and bacterial tolerance to oxidative and nitrosative stress. Biochim Biophys Acta. 2014 Jul;1837(7):1178-87. doi:, 10.1016/j.bbabio.2014.01.016. Epub 2014 Jan 31. PMID:24486503 doi:http://dx.doi.org/10.1016/j.bbabio.2014.01.016
- ↑ Fischer M, Falke D, Naujoks C, Sawers RG. Cytochrome bd Oxidase Has an Important Role in Sustaining Growth and Development of Streptomyces coelicolor A3(2) under Oxygen-Limiting Conditions. J Bacteriol. 2018 Jul 25;200(16). pii: JB.00239-18. doi: 10.1128/JB.00239-18., Print 2018 Aug 15. PMID:29784883 doi:http://dx.doi.org/10.1128/JB.00239-18
- ↑ 7.00 7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 Thesseling A, Rasmussen T, Burschel S, Wohlwend D, Kagi J, Muller R, Bottcher B, Friedrich T. Homologous bd oxidases share the same architecture but differ in mechanism. Nat Commun. 2019 Nov 13;10(1):5138. doi: 10.1038/s41467-019-13122-4. PMID:31723136 doi:http://dx.doi.org/10.1038/s41467-019-13122-4
- ↑ 8.0 8.1 8.2 8.3 8.4 Safarian S, Rajendran C, Muller H, Preu J, Langer JD, Ovchinnikov S, Hirose T, Kusumoto T, Sakamoto J, Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science. 2016 Apr 29;352(6285):583-6. doi: 10.1126/science.aaf2477. PMID:27126043 doi:http://dx.doi.org/10.1126/science.aaf2477
- ↑ Moosa A, Lamprecht DA, Arora K, Barry CE 3rd, Boshoff HIM, Ioerger TR, Steyn AJC, Mizrahi V, Warner DF. Susceptibility of Mycobacterium tuberculosis Cytochrome bd Oxidase Mutants to Compounds Targeting the Terminal Respiratory Oxidase, Cytochrome c. Antimicrob Agents Chemother. 2017 Sep 22;61(10). pii: AAC.01338-17. doi:, 10.1128/AAC.01338-17. Print 2017 Oct. PMID:28760899 doi:http://dx.doi.org/10.1128/AAC.01338-17
- ↑ 10.0 10.1 Hughes ER, Winter MG, Duerkop BA, Spiga L, Furtado de Carvalho T, Zhu W, Gillis CC, Buttner L, Smoot MP, Behrendt CL, Cherry S, Santos RL, Hooper LV, Winter SE. Microbial Respiration and Formate Oxidation as Metabolic Signatures of Inflammation-Associated Dysbiosis. Cell Host Microbe. 2017 Feb 8;21(2):208-219. doi: 10.1016/j.chom.2017.01.005. PMID:28182951 doi:http://dx.doi.org/10.1016/j.chom.2017.01.005
- ↑ 11.0 11.1 Shepherd M, Achard ME, Idris A, Totsika M, Phan MD, Peters KM, Sarkar S, Ribeiro CA, Holyoake LV, Ladakis D, Ulett GC, Sweet MJ, Poole RK, McEwan AG, Schembri MA. The cytochrome bd-I respiratory oxidase augments survival of multidrug-resistant Escherichia coli during infection. Sci Rep. 2016 Oct 21;6:35285. doi: 10.1038/srep35285. PMID:27767067 doi:http://dx.doi.org/10.1038/srep35285
- ↑ 12.0 12.1 Arora K, Ochoa-Montano B, Tsang PS, Blundell TL, Dawes SS, Mizrahi V, Bayliss T, Mackenzie CJ, Cleghorn LA, Ray PC, Wyatt PG, Uh E, Lee J, Barry CE 3rd, Boshoff HI. Respiratory flexibility in response to inhibition of cytochrome C oxidase in Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2014 Nov;58(11):6962-5. doi: 10.1128/AAC.03486-14., Epub 2014 Aug 25. PMID:25155596 doi:http://dx.doi.org/10.1128/AAC.03486-14
- ↑ Galvan AE, Chalon MC, Rios Colombo NS, Schurig-Briccio LA, Sosa-Padilla B, Gennis RB, Bellomio A. Microcin J25 inhibits ubiquinol oxidase activity of purified cytochrome bd-I from Escherichia coli. Biochimie. 2019 May;160:141-147. doi: 10.1016/j.biochi.2019.02.007. Epub 2019 Feb, 19. PMID:30790617 doi:http://dx.doi.org/10.1016/j.biochi.2019.02.007
- ↑ Lu P, Heineke MH, Koul A, Andries K, Cook GM, Lill H, van Spanning R, Bald D. The cytochrome bd-type quinol oxidase is important for survival of Mycobacterium smegmatis under peroxide and antibiotic-induced stress. Sci Rep. 2015 May 27;5:10333. doi: 10.1038/srep10333. PMID:26015371 doi:http://dx.doi.org/10.1038/srep10333
Student Contributors
- Grace Bassler
- Emily Neal
- Marisa Villarreal