6q0k

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 13: Line 13:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/BRAF_HUMAN BRAF_HUMAN]] Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May play a role in the postsynaptic responses of hippocampal neuron. [[http://www.uniprot.org/uniprot/1433Z_HUMAN 1433Z_HUMAN]] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.<ref>PMID:9360956</ref> <ref>PMID:14578935</ref> <ref>PMID:15071501</ref> <ref>PMID:15644438</ref> <ref>PMID:16376338</ref>
[[http://www.uniprot.org/uniprot/BRAF_HUMAN BRAF_HUMAN]] Involved in the transduction of mitogenic signals from the cell membrane to the nucleus. May play a role in the postsynaptic responses of hippocampal neuron. [[http://www.uniprot.org/uniprot/1433Z_HUMAN 1433Z_HUMAN]] Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner.<ref>PMID:9360956</ref> <ref>PMID:14578935</ref> <ref>PMID:15071501</ref> <ref>PMID:15644438</ref> <ref>PMID:16376338</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
RAF family kinases are RAS-activated switches that initiate signaling through the MAP kinase cascade to control cellular proliferation, differentiation and survival(1-3). RAF activity is tightly regulated, and inappropriate activation is a frequent cause of cancer(4-6). At present, the structural basis of RAF regulation is poorly understood. Here we describe autoinhibited and active state structures of full-length BRAF in complexes with MEK1 and a 14-3-3 dimer, determined using cryo-electron microscopy (cryo-EM). A 4.1 A resolution cryo-EM reconstruction reveals an inactive BRAF-MEK1 complex restrained in a cradle formed by the 14-3-3 dimer, which binds the phosphorylated S365 and S729 sites that flank the BRAF kinase domain. The BRAF cysteine-rich domain (CRD) occupies a central position that stabilizes this assembly, but the adjacent RAS-binding domain (RBD) is poorly ordered and peripheral. The 14-3-3 cradle maintains autoinhibition by sequestering the membrane-binding CRD and blocking dimerization of the BRAF kinase domain. In the active state, these inhibitory interactions are released and a single 14-3-3 dimer rearranges to bridge the C-terminal pS729 binding sites of two BRAFs, driving formation of an active, back-to-back BRAF dimer. Our structural snapshots provide a foundation for understanding normal RAF regulation and its mutational disruption in cancer and developmental syndromes.
 +
 +
Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes.,Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, Sharif H, Marto JA, Jeon H, Eck MJ Nature. 2019 Oct 3. pii: 10.1038/s41586-019-1660-y. doi:, 10.1038/s41586-019-1660-y. PMID:31581174<ref>PMID:31581174</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6q0k" style="background-color:#fffaf0;"></div>
==See Also==
==See Also==

Revision as of 06:03, 22 April 2020

Structure of a MAPK pathway complex

6q0k, resolution 6.80Å

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools