User:Lukáš Cakl/Sandbox 1
From Proteopedia
(Difference between revisions)
(New page: ==Human PCNA mutant - S228I== <StructureSection load='5e0t' size='340' side='right' caption='5e0t, resolution 2.67Å' scene=''> == Structural highlights == <table><...) |
|||
Line 1: | Line 1: | ||
- | + | <StructureSection load='' size='350' side='right' caption='Human proliferating cell nuclear antigen trimer (cyan, green, deeppink) complex with p15 peptide (yellow, magenta) (PDB entry [[4d2g]])' scene='43/439961/Cv/2'> | |
- | <StructureSection load=' | + | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | A Disease-Causing Variant in PCNA Disrupts a Promiscuous Protein Binding Site.,Duffy CM, Hilbert BJ, Kelch BA J Mol Biol. 2016 Mar 27;428(6):1023-40. doi: 10.1016/j.jmb.2015.11.029. Epub 2015, Dec 11. PMID:26688547<ref>PMID:26688547</ref> | ||
- | |||
- | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
- | </div> | ||
- | <div class="pdbe-citations 5e0t" style="background-color:#fffaf0;"></div> | ||
- | == References == | ||
- | <references/> | ||
- | __TOC__ | ||
- | </StructureSection> | ||
- | [[Category: Human]] | ||
- | [[Category: Duffy, C M]] | ||
- | [[Category: Hilbert, B J]] | ||
- | [[Category: Kelch, B A]] | ||
- | [[Category: Dna binding protein]] | ||
- | [[Category: Dna replication]] | ||
- | |||
- | |||
- | ------ | ||
- | |||
- | <StructureSection load='' size='350' side='right' caption='Human proliferating cell nuclear antigen trimer (cyan, green, deeppink) complex with p15 peptide (yellow, magenta) (PDB entry [[4d2g]])' scene='43/439961/Cv/2'> | ||
== Function == | == Function == | ||
- | [[Proliferating Cell Nuclear Antigen]] (PCNA) acts as a DNA sliding clamp | + | [[Proliferating Cell Nuclear Antigen]] (PCNA) is a protein that acts as a DNA sliding clamp. It forms a homotrimer encircling the DNA and binds other peptides means known as [[PCNA interacting proteins]] (PIPs). It acts as a processivity factor for DNA polymerases and other enzymes which act upon DNA. Examples of such are DNA polymerase (Dpo) δ in eukaryotic cells<ref>PMID:26688547</ref>. The increases in processivity are very pronounced. The number of basepairs processed before complex dissociation occurs is increased more than a thousandfold (~10bp<ref>PMID:7040370</ref> to ~80kbp<ref>PMID:19666586</ref>) and the speed of nucleotide incorporation rises about a hundredfold <ref>PMID:17707226</ref>. |
== Relevance == | == Relevance == | ||
+ | PCNA is featured in many cellular pathways involving DNA. [FEN1] bound to PCNA acts as a flap endonuclease and cleaves a displaced ssDNA (flap) containing oxidatively damaged dideoxyribose residue <ref>PMID:10559261</ref>. As stated above PCNA is also vital to formation of the procesive complex for DNA replication <ref>PMID:1974050</ref> and is featured even in gene expression and transcription when bound to [GADD45A] <ref>PMID:20460379</ref>. Thus PCNA is relevant in research and even medicine. | ||
+ | |||
PCNA is useful in the diagnosis of high-grade dysplasia<ref>PMID:8781908</ref>. | PCNA is useful in the diagnosis of high-grade dysplasia<ref>PMID:8781908</ref>. | ||
== Structural highlights == | == Structural highlights == | ||
- | p15 regulates DNA replication and repair by binding to PCNA. PCNA-p15 peptide complex shows the <scene name='43/439961/Cv/5'>peptide passes through the PCNA ring</scene> and has <scene name='43/439961/Cv/6'>numerous interactions with it</scene><ref>PMID:25762514</ref>. | + | p15 regulates DNA replication and repair by binding to PCNA. PCNA-p15 peptide complex shows the <scene name='43/439961/Cv/5'>peptide passes through the PCNA ring</scene> and has <scene name='43/439961/Cv/6'>numerous interactions with it</scene><ref>PMID:25762514</ref>. Of interest is the binding site contained at each face of the PCNA ring. Said site is formed by a C-terminal domain formed groove and an interdomain connecting loop (IDCL). Some partners do bind to the N-terminal domain as well. There are multiple PIP binding motifs, but the most common one is QxxΨxx∇∇ (where Ψ is a hydrophobic residue and ∇ is either the aromatic residue F or Y) <ref>DOI:10.1016/S0092-8674(00)81347-1</ref><ref>DOI:10.1016/j.str.2004.09.018</ref> |
+ | |||
+ | TODO: 1vym | ||
+ | |||
+ | TODO: Known mutation and disease | ||
+ | |||
+ | TODO: Known mutation structure comparison | ||
== 3D Structures of Proliferating Cell Nuclear Antigen == | == 3D Structures of Proliferating Cell Nuclear Antigen == | ||
Line 50: | Line 26: | ||
<references/> | <references/> | ||
[[Category:Topic Page]] | [[Category:Topic Page]] | ||
- | |||
- | |||
- | ------ | ||
- | |||
- | |||
- | ==Your Heading Here (maybe something like 'Structure')== | ||
- | <StructureSection load='1stp' size='340' side='right' caption='Caption for this structure' scene=''> | ||
- | This is a default text for your page '''Lukáš Cakl/Sandbox 1'''. Click above on '''edit this page''' to modify. Be careful with the < and > signs. | ||
- | You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue. | ||
- | |||
- | == Function == | ||
- | |||
- | == Disease == | ||
- | |||
- | == Relevance == | ||
- | |||
- | == Structural highlights == | ||
- | |||
- | This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. | ||
- | |||
- | </StructureSection> | ||
- | == References == | ||
- | <references/> |
Revision as of 13:41, 29 April 2020
|
References
- ↑ Duffy CM, Hilbert BJ, Kelch BA. A Disease-Causing Variant in PCNA Disrupts a Promiscuous Protein Binding Site. J Mol Biol. 2016 Mar 27;428(6):1023-40. doi: 10.1016/j.jmb.2015.11.029. Epub 2015, Dec 11. PMID:26688547 doi:http://dx.doi.org/10.1016/j.jmb.2015.11.029
- ↑ Fay PJ, Johanson KO, McHenry CS, Bambara RA. Size classes of products synthesized processively by two subassemblies of Escherichia coli DNA polymerase III holoenzyme. J Biol Chem. 1982 May 25;257(10):5692-9. PMID:7040370
- ↑ Yao NY, Georgescu RE, Finkelstein J, O'Donnell ME. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression. Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13236-41. doi:, 10.1073/pnas.0906157106. Epub 2009 Aug 3. PMID:19666586 doi:http://dx.doi.org/10.1073/pnas.0906157106
- ↑ McInerney P, Johnson A, Katz F, O'Donnell M. Characterization of a triple DNA polymerase replisome. Mol Cell. 2007 Aug 17;27(4):527-38. doi: 10.1016/j.molcel.2007.06.019. PMID:17707226 doi:http://dx.doi.org/10.1016/j.molcel.2007.06.019
- ↑ Matsumoto Y, Kim K, Hurwitz J, Gary R, Levin DS, Tomkinson AE, Park MS. Reconstitution of proliferating cell nuclear antigen-dependent repair of apurinic/apyrimidinic sites with purified human proteins. J Biol Chem. 1999 Nov 19;274(47):33703-8. doi: 10.1074/jbc.274.47.33703. PMID:10559261 doi:http://dx.doi.org/10.1074/jbc.274.47.33703
- ↑ Lee SH, Hurwitz J. Mechanism of elongation of primed DNA by DNA polymerase delta, proliferating cell nuclear antigen, and activator 1. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5672-6. doi: 10.1073/pnas.87.15.5672. PMID:1974050 doi:http://dx.doi.org/10.1073/pnas.87.15.5672
- ↑ Sanchez R, Pantoja-Uceda D, Prieto J, Diercks T, Marcaida MJ, Montoya G, Campos-Olivas R, Blanco FJ. Solution structure of human growth arrest and DNA damage 45alpha (Gadd45alpha) and its interactions with proliferating cell nuclear antigen (PCNA) and Aurora A kinase. J Biol Chem. 2010 Jul 16;285(29):22196-201. Epub 2010 May 11. PMID:20460379 doi:10.1074/jbc.M109.069344
- ↑ Kullmann F, Fadaie M, Gross V, Knuchel R, Bocker T, Steinbach P, Scholmerich J, Ruschoff J. Expression of proliferating cell nuclear antigen (PCNA) and Ki-67 in dysplasia in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 1996 Apr;8(4):371-9. PMID:8781908
- ↑ De Biasio A, de Opakua AI, Mortuza GB, Molina R, Cordeiro TN, Castillo F, Villate M, Merino N, Delgado S, Gil-Carton D, Luque I, Diercks T, Bernado P, Montoya G, Blanco FJ. Structure of p15(PAF)-PCNA complex and implications for clamp sliding during DNA replication and repair. Nat Commun. 2015 Mar 12;6:6439. doi: 10.1038/ncomms7439. PMID:25762514 doi:http://dx.doi.org/10.1038/ncomms7439
- ↑ doi: https://dx.doi.org/10.1016/S0092-8674(00)81347-1
- ↑ Bruning JB, Shamoo Y. Structural and thermodynamic analysis of human PCNA with peptides derived from DNA polymerase-delta p66 subunit and flap endonuclease-1. Structure. 2004 Dec;12(12):2209-19. PMID:15576034 doi:http://dx.doi.org/10.1016/j.str.2004.09.018