User:Samantha Schneider/Sandbox1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 12: Line 12:
The fibrin stabilization factor is a heterotetramer that circulates throughout the blood plasma as a 320 kda molecule. It consists of a dimer of A subunits and a dimer of B subunits. The FXIIIA subunit is composed of 4 structural units: <scene name='84/842930/Beta_sandwhich/1'>Beta sandwich</scene>, core, barrel-1, and barrel-2 domains. The A subunit has a 37 amino acid N-terminal activation peptide, this is cleaved by thrombin during FXIII activation to FXIIIa. The [https://en.wikipedia.org/wiki/Beta-sandwich beta sandwhich] consists of residues 38-184. The <scene name='84/842930/Activation/1'>activation peptide</scene> is the first 37 amino acids on the N-terminal of the A subunit.
The fibrin stabilization factor is a heterotetramer that circulates throughout the blood plasma as a 320 kda molecule. It consists of a dimer of A subunits and a dimer of B subunits. The FXIIIA subunit is composed of 4 structural units: <scene name='84/842930/Beta_sandwhich/1'>Beta sandwich</scene>, core, barrel-1, and barrel-2 domains. The A subunit has a 37 amino acid N-terminal activation peptide, this is cleaved by thrombin during FXIII activation to FXIIIa. The [https://en.wikipedia.org/wiki/Beta-sandwich beta sandwhich] consists of residues 38-184. The <scene name='84/842930/Activation/1'>activation peptide</scene> is the first 37 amino acids on the N-terminal of the A subunit.
-
FXIIIB subunits are glycoproteins. The B subunit is made up of ten <scene name='84/842930/Sushi-1/1'>Sushi</scene> domains which are each composed of approximately 60 amino acids. The B subunit is known to have a protective role, but recent research has suggested that there may be a regulatory role as well. The Sushi domain's variable length loop region is shown to have a hydrophobic interaction with the N-terminal activation region of the A subunit. The variable length loop region of the sushi-1 domain is electrostatically neutral. The Cab1 site is always exposed and therefore is bound by a calcium ion.
+
FXIIIB subunits are glycoproteins. The B subunit is made up of ten [https://en.wikipedia.org/wiki/Sushi_domain sushi] domains. The <scene name='84/842930/Sushi-1/1'>Sushi</scene> domains which are each composed of approximately 60 amino acids. The B subunit is known to have a protective role, but recent research has suggested that there may be a regulatory role as well. The Sushi domain's variable length loop region is shown to have a hydrophobic interaction with the N-terminal activation region of the A subunit. The variable length loop region of the sushi-1 domain is electrostatically neutral. The Cab1 site is always exposed and therefore is bound by a calcium ion.
<scene name='84/842930/Hydrophobic_tunnel/1'>Hydrophobic Tunnel</scene> is formed in the A subunit upon activation of molecule by calcium. It is the entry for the Q and K substrate to the binding site. It is formed by planar interactions of the Trp rings. The Cysteine is reactive in the binding pocket.
<scene name='84/842930/Hydrophobic_tunnel/1'>Hydrophobic Tunnel</scene> is formed in the A subunit upon activation of molecule by calcium. It is the entry for the Q and K substrate to the binding site. It is formed by planar interactions of the Trp rings. The Cysteine is reactive in the binding pocket.
Line 20: Line 20:
The symptoms of Factor XIII deficiency vary but in 80% of cases appear after birth with a bleeding episode stemming from the umbilical stump. Bleeding can occur spontaneously or from various activities. Commonly associated symptoms include chronic nosebleeds, bleeding from the gums, discoloration of the skin, and hematomas. These individuals typically bruise easily and spontaneously. 30% of people experience spontaneous intracranial hemorrhages. In homozygous woman spontaneous recurrent miscarriages can occur.
The symptoms of Factor XIII deficiency vary but in 80% of cases appear after birth with a bleeding episode stemming from the umbilical stump. Bleeding can occur spontaneously or from various activities. Commonly associated symptoms include chronic nosebleeds, bleeding from the gums, discoloration of the skin, and hematomas. These individuals typically bruise easily and spontaneously. 30% of people experience spontaneous intracranial hemorrhages. In homozygous woman spontaneous recurrent miscarriages can occur.
 +
 +
In Class I cases, which constitute the majority of FXIII deficiency cases, there is virtually no thrombin dependent transamidase activity. In class 2 cases there has been a Val34Leu mutation in the A subunits. The class II mutation leads to a two-fold increase in FXIII. This mutation has shown to have protective effects against thrombotic disease in its population.
== Evolution ==
== Evolution ==
Line 32: Line 34:
<references/>
<references/>
1.Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É (July 2011). "Factor XIII: a coagulation factor with multiple plasmatic and cellular functions". Physiological Reviews. 91 (3): 931–72. doi:10.1152/physrev.00016.2010. PMID 21742792.
1.Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É (July 2011). "Factor XIII: a coagulation factor with multiple plasmatic and cellular functions". Physiological Reviews. 91 (3): 931–72. doi:10.1152/physrev.00016.2010. PMID 21742792.
 +
 +
2. Gupta, S. et al. Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective. Sci. Rep. 6, 30105; doi: 10.1038/srep30105 (2016).

Revision as of 17:15, 29 April 2020

Human Coagulation Factor XIII

Caption for this structure

Drag the structure with the mouse to rotate

References

1.Muszbek L, Bereczky Z, Bagoly Z, Komáromi I, Katona É (July 2011). "Factor XIII: a coagulation factor with multiple plasmatic and cellular functions". Physiological Reviews. 91 (3): 931–72. doi:10.1152/physrev.00016.2010. PMID 21742792.

2. Gupta, S. et al. Revisiting the mechanism of coagulation factor XIII activation and regulation from a structure/functional perspective. Sci. Rep. 6, 30105; doi: 10.1038/srep30105 (2016).

Proteopedia Page Contributors and Editors (what is this?)

Samantha Schneider

Personal tools