User:Morgan Bertolino/Sandbox 2

From Proteopedia

< User:Morgan Bertolino(Difference between revisions)
Jump to: navigation, search
Current revision (20:25, 29 April 2020) (edit) (undo)
 
Line 1: Line 1:
== Background ==
== Background ==
<StructureSection load='2x4d' size='340' side='right' caption='Crystal structure of human phospholysine phosphohistidine inorganic pyrophosphate phosphatase' scene=''>
<StructureSection load='2x4d' size='340' side='right' caption='Crystal structure of human phospholysine phosphohistidine inorganic pyrophosphate phosphatase' scene=''>
-
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase <scene name='84/842888/Lhpp/1'>(LHPP)</scene> is a hydrolase enzyme which is known to be expressed in the liver, kidney, and at moderate levels in the brain<ref name=Gohla>DOI: 10.1016/j.bbamcr.2018.07.007</ref>. It belongs to the haloacid dehalogenase (HAD) superfamily of hydrolases with hydrolyze a wide variety of substrates<ref name=Seifried>DOI: 10.1111/j.1742-4658.2012.08633.x</ref>. LHPP, specifically, hydrolyzes both oxygen-phosphorous bonds in inorganic phosphate and nitrogen-phosphorous bonds in 6-phospholysine, **phosphohistidine**, and **imidodiphosphate**. LHPP has been of particular interest to researchers in recent years due to its hypothesized function as a tumor suppressor and thus its role in various cancers<ref name=Hindupur>DOI: 10.1038/nature26140</ref>.
+
Phospholysine phosphohistidine inorganic pyrophosphate phosphatase <scene name='84/842888/Lhpp/1'>(LHPP)</scene> is a hydrolase enzyme which is known to be expressed in the liver, kidney, and at moderate levels in the brain<ref name=Gohla>DOI: 10.1016/j.bbamcr.2018.07.007</ref>. It belongs to the haloacid dehalogenase (HAD) superfamily of hydrolases with hydrolyze a wide variety of substrates<ref name=Seifried>DOI: 10.1111/j.1742-4658.2012.08633.x</ref>. LHPP, specifically, hydrolyzes both oxygen-phosphorous bonds in inorganic phosphate and nitrogen-phosphorous bonds in 6-phospholysine, 3-phosphohistidine, and imidodiphosphate. LHPP has been of particular interest to researchers in recent years due to its hypothesized function as a tumor suppressor and thus its role in various cancers<ref name=Hindupur>DOI: 10.1038/nature26140</ref>.
== The HAD Superfamily ==
== The HAD Superfamily ==
Line 14: Line 14:
== LHPP-Specific Mechanisms & Structure ==
== LHPP-Specific Mechanisms & Structure ==
-
LHPP is a phosphoramidase that forms a homodimer in solution and is involved in the cleavage of P-N and O-P bonds. This protein contains a Ser residue where other members of the HAD family contain Asp or Thr residues. It also contains a Ser + 2 residue, which is unique to mammalian HAD-type hydrolases. LHPP is a capped HAD phosphatase (meaning it contains a cap domain) with a C2a-type cap domain. Cap domains of HAD phosphatases are integral to controlling access to the active site via shielding and determining substrate specificity. Some capped HAD phosphatases, like LHPP, are able to act on phosphoproteins in addition to their other functions. This is particularly interesting due to the occluded nature of the active sites of phosphoproteins, making them difficult to access. LHPP, along with other C2a-capped HAD phosphatases, has been shown to act on serine-, tyrosine-, and histidine-phosphorylated proteins. The subcellular localization of LHPP is currently unknown, but proposed locations are the nucleus and cytosol. The enzyme is also predicted to interact with ATP synthase subunits and theorized to play a role in oxidative phosphorylation<ref name=Gohla/>.
+
LHPP is a phosphoramidase that forms a homodimer in solution and is involved in the cleavage of P-N and O-P bonds. This protein contains a Ser residue where other members of the HAD family contain Asp or Thr residues. It also contains a Ser + 2 residue, which is unique to mammalian HAD-type hydrolases. LHPP is a capped HAD phosphatase (meaning it contains a cap domain) with a C2a-type cap domain. Cap domains of HAD phosphatases are integral to controlling access to the active site via shielding and determining substrate specificity. Some capped HAD phosphatases, like LHPP, are able to act on <scene name='84/842888/Phosphoprotein/1'>phosphoproteins</scene> in addition to their other functions. This is particularly interesting due to the occluded nature of the active sites of phosphoproteins, making them difficult to access. LHPP, along with other C2a-capped HAD phosphatases, has been shown to act on serine-, tyrosine-, and histidine-phosphorylated proteins. The subcellular localization of LHPP is currently unknown, but proposed locations are the nucleus and cytosol. The enzyme is also predicted to interact with ATP synthase subunits and theorized to play a role in oxidative phosphorylation<ref name=Gohla/>.
== Role in Disease ==
== Role in Disease ==

Current revision

Background

Crystal structure of human phospholysine phosphohistidine inorganic pyrophosphate phosphatase

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Morgan Bertolino

Personal tools