| Structural highlights
5jea is a 12 chain structure with sequence from Bpt4 and Baker's yeast. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Ligands: | , , |
Gene: | RRP45, YDR280W, D9954.1 (Baker's yeast), DIS3, RRP44, YOL021C, O2197 (Baker's yeast), SKI7, YOR076C, YOR29-27 (BPT4), SKI6, ECM20, RRP41, YGR195W, G7587 (Baker's yeast), RRP43, YCR035C, YCR35C, YCR522 (Baker's yeast), RRP46, YGR095C (Baker's yeast), RRP42, YDL111C (Baker's yeast), MTR3, YGR158C, G6676 (Baker's yeast), RRP40, YOL142W (Baker's yeast), RRP4, YHR069C (Baker's yeast), CSL4, SKI4, YNL232W, N1154 (Baker's yeast) |
Activity: | Lysozyme, with EC number 3.2.1.17 |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
[MTR3_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. MTR3 is part of the hexameric ring of RNase PH domain-containing subunits proposed to form a central channel which threads RNA substrates for degradation.[1] [2] [3] [SKI7_YEAST] Represses the expression of non-poly(A) mRNAs like L-A or M viruses and is therefore involved in antiviral system. Mediates interactions via its N-terminus between the exosome and the SKI complex which operate in the 3'-to-5' mRNA-decay pathway. By interacting with NAM7, is also required for nonsense-mediated 3'-to-5' mRNA-decay (NMD). May recognize a stalled 80S ribosome at the 3'-end of a nonstop mRNA which leads to the recruitment of the exosome and SKI complexes to the mRNAs to be degraded.[4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [RRP43_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. RRP43 is part of the hexameric ring of RNase PH domain-containing subunits proposed to form a central channel which threads RNA substrates for degradation.[14] [15] [16] [17] [RRP40_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. RRP40 as peripheral part of the Exo-9 complex is thought to stabilize the hexameric ring of RNase PH-domain subunits.[18] [19] [20] [CSL4_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes.[21] [22] [23] [RRP41_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. SKI6 is part of the hexameric ring of RNase PH domain-containing subunits proposed to form a central channel which threads RNA substrates for degradation.[24] [25] [RRP4_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. RRP4 as peripheral part of the Exo-9 complex is thought to stabilize the hexameric ring of RNase PH-domain subunits.[26] [27] [28] [29] [RRP45_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. RRP45 is part of the hexameric ring of RNase PH domain-containing subunits proposed to form a central channel which threads RNA substrates for degradation.[30] [31] [RRP46_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. RRP46 is part of the hexameric ring of RNase PH domain-containing subunits proposed to form a central channel which threads RNA substrates for degradation.[32] [33] [RRP44_YEAST] Catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. DIS3 has both 3'-5' exonuclease and endonuclease activities. The exonuclease activity of DIS3 is down-regulated upon association with Exo-9 possibly involving a conformational change in the catalytic domain and threading of the RNA substrate through the complex central channel. Structured substrates can be degraded if they have a 3' single-stranded extension sufficiently long (such as 35 nt poly(A)) to span the proposed complex inner RNA-binding path and to reach the exonuclease site provided by DIS3. Plays a role in mitotic control.[34] [35] [36] [RRP42_YEAST] Non-catalytic component of the RNA exosome complex which has 3'->5' exoribonuclease activity and participates in a multitude of cellular RNA processing and degradation events. In the nucleus, the RNA exosome complex is involved in proper maturation of stable RNA species such as rRNA, snRNA and snoRNA, in the elimination of RNA processing by-products and non-coding 'pervasive' transcripts, such as antisense RNA species and cryptic unstable transcripts (CUTs), and of mRNAs with processing defects, thereby limiting or excluding their export to the cytoplasm. In the cytoplasm, the RNA exosome complex is involved in general mRNA turnover and in RNA surveillance pathways, preventing translation of aberrant mRNAs. The catalytic inactive RNA exosome core complex of 9 subunits (Exo-9) is proposed to play a pivotal role in the binding and presentation of RNA for ribonucleolysis, and to serve as a scaffold for the association with catalytic subunits and accessory proteins or complexes. RRP42 is part of the hexameric ring of RNase PH domain-containing subunits proposed to form a central channel which threads RNA substrates for degradation.[37] [38]
Publication Abstract from PubMed
The RNA exosome complex associates with nuclear and cytoplasmic cofactors to mediate the decay, surveillance, or processing of a wide variety of transcripts. In the cytoplasm, the conserved core of the exosome (Exo10) functions together with the conserved Ski complex. The interaction of S. cerevisiae Exo10 and Ski is not direct but requires a bridging cofactor, Ski7. Here, we report the 2.65 A resolution structure of S. cerevisiae Exo10 bound to the interacting domain of Ski7. Extensive hydrophobic interactions rationalize the high affinity and stability of this complex, pointing to Ski7 as a constitutive component of the cytosolic exosome. Despite the absence of sequence homology, cytoplasmic Ski7 and nuclear Rrp6 bind Exo10 using similar surfaces and recognition motifs. Knowledge of the interacting residues in the yeast complexes allowed us to identify a splice variant of human HBS1-Like as a Ski7-like exosome-binding protein, revealing the evolutionary conservation of this cytoplasmic cofactor.
Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex.,Kowalinski E, Kogel A, Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E Mol Cell. 2016 Jul 7;63(1):125-34. doi: 10.1016/j.molcel.2016.05.028. Epub 2016, Jun 23. PMID:27345150[39]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Kadowaki T, Schneiter R, Hitomi M, Tartakoff AM. Mutations in nucleolar proteins lead to nucleolar accumulation of polyA+ RNA in Saccharomyces cerevisiae. Mol Biol Cell. 1995 Sep;6(9):1103-10. PMID:8534909
- ↑ Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P. The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev. 1999 Aug 15;13(16):2148-58. PMID:10465791
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Benard L, Carroll K, Valle RC, Masison DC, Wickner RB. The ski7 antiviral protein is an EF1-alpha homolog that blocks expression of non-Poly(A) mRNA in Saccharomyces cerevisiae. J Virol. 1999 Apr;73(4):2893-900. PMID:10074137
- ↑ van Hoof A, Staples RR, Baker RE, Parker R. Function of the ski4p (Csl4p) and Ski7p proteins in 3'-to-5' degradation of mRNA. Mol Cell Biol. 2000 Nov;20(21):8230-43. PMID:11027292
- ↑ He W, Parker R. The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3' termini from partial degradation. Genetics. 2001 Aug;158(4):1445-55. PMID:11514438
- ↑ Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S, Katada T. Ski7p G protein interacts with the exosome and the Ski complex for 3'-to-5' mRNA decay in yeast. EMBO J. 2001 Sep 3;20(17):4684-93. PMID:11532933 doi:10.1093/emboj/20.17.4684
- ↑ van Hoof A, Frischmeyer PA, Dietz HC, Parker R. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science. 2002 Mar 22;295(5563):2262-4. PMID:11910110 doi:http://dx.doi.org/10.1126/science.1067272
- ↑ Mitchell P, Tollervey D. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3'-->5' degradation. Mol Cell. 2003 May;11(5):1405-13. PMID:12769863
- ↑ Takahashi S, Araki Y, Sakuno T, Katada T. Interaction between Ski7p and Upf1p is required for nonsense-mediated 3'-to-5' mRNA decay in yeast. EMBO J. 2003 Aug 1;22(15):3951-9. PMID:12881429 doi:http://dx.doi.org/10.1093/emboj/cdg374
- ↑ Kushner DB, Lindenbach BD, Grdzelishvili VZ, Noueiry AO, Paul SM, Ahlquist P. Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15764-9. Epub 2003 Dec 11. PMID:14671320 doi:10.1073/pnas.2536857100
- ↑ Inada T, Aiba H. Translation of aberrant mRNAs lacking a termination codon or with a shortened 3'-UTR is repressed after initiation in yeast. EMBO J. 2005 Apr 20;24(8):1584-95. Epub 2005 Mar 31. PMID:15933721 doi:http://dx.doi.org/7600636
- ↑ Ridley SP, Sommer SS, Wickner RB. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol Cell Biol. 1984 Apr;4(4):761-70. PMID:6371496
- ↑ Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 1997 Nov 14;91(4):457-66. PMID:9390555
- ↑ Zanchin NI, Goldfarb DS. The exosome subunit Rrp43p is required for the efficient maturation of 5.8S, 18S and 25S rRNA. Nucleic Acids Res. 1999 Mar 1;27(5):1283-8. PMID:9973615
- ↑ Oliveira CC, Gonzales FA, Zanchin NI. Temperature-sensitive mutants of the exosome subunit Rrp43p show a deficiency in mRNA degradation and no longer interact with the exosome. Nucleic Acids Res. 2002 Oct 1;30(19):4186-98. PMID:12364597
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P. The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev. 1999 Aug 15;13(16):2148-58. PMID:10465791
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, Sanchez-Rotunno M, Arraiano CM, van Hoof A. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol. 2009 Jan;16(1):56-62. doi: 10.1038/nsmb.1528. Epub 2008 Dec , 7. PMID:19060898 doi:http://dx.doi.org/10.1038/nsmb.1528
- ↑ Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P. The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev. 1999 Aug 15;13(16):2148-58. PMID:10465791
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, Sanchez-Rotunno M, Arraiano CM, van Hoof A. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol. 2009 Jan;16(1):56-62. doi: 10.1038/nsmb.1528. Epub 2008 Dec , 7. PMID:19060898 doi:http://dx.doi.org/10.1038/nsmb.1528
- ↑ Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 1997 Nov 14;91(4):457-66. PMID:9390555
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 1997 Nov 14;91(4):457-66. PMID:9390555
- ↑ Mitchell P, Petfalski E, Tollervey D. The 3' end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 1996 Feb 15;10(4):502-13. PMID:8600032
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, Sanchez-Rotunno M, Arraiano CM, van Hoof A. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol. 2009 Jan;16(1):56-62. doi: 10.1038/nsmb.1528. Epub 2008 Dec , 7. PMID:19060898 doi:http://dx.doi.org/10.1038/nsmb.1528
- ↑ Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P. The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev. 1999 Aug 15;13(16):2148-58. PMID:10465791
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P. The yeast exosome and human PM-Scl are related complexes of 3' --> 5' exonucleases. Genes Dev. 1999 Aug 15;13(16):2148-58. PMID:10465791
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Noguchi E, Hayashi N, Azuma Y, Seki T, Nakamura M, Nakashima N, Yanagida M, He X, Mueller U, Sazer S, Nishimoto T. Dis3, implicated in mitotic control, binds directly to Ran and enhances the GEF activity of RCC1. EMBO J. 1996 Oct 15;15(20):5595-605. PMID:8896453
- ↑ Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 1997 Nov 14;91(4):457-66. PMID:9390555
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3'-->5' exoribonucleases. Cell. 1997 Nov 14;91(4):457-66. PMID:9390555
- ↑ Dziembowski A, Lorentzen E, Conti E, Seraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol. 2007 Jan;14(1):15-22. Epub 2006 Dec 17. PMID:17173052 doi:http://dx.doi.org/nsmb1184
- ↑ Kowalinski E, Kogel A, Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E. Structure of a Cytoplasmic 11-Subunit RNA Exosome Complex. Mol Cell. 2016 Jul 7;63(1):125-34. doi: 10.1016/j.molcel.2016.05.028. Epub 2016, Jun 23. PMID:27345150 doi:http://dx.doi.org/10.1016/j.molcel.2016.05.028
|