WWP2
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
<StructureSection load='5TJ7' size='350' side='right' caption="WWP2 Ubiquitin Ligase Chimeric Structure (PDB entry [[5TJ7]]). The 2,3-linker (red) connects the WW2 domain (yellow) to the WW3 domain. The hinge (magenta) connects the C-terminal lobe (green) and N-terminal lobe (silver) of the HECT domain." scene="84/848928/Overallcolored/14"> | <StructureSection load='5TJ7' size='350' side='right' caption="WWP2 Ubiquitin Ligase Chimeric Structure (PDB entry [[5TJ7]]). The 2,3-linker (red) connects the WW2 domain (yellow) to the WW3 domain. The hinge (magenta) connects the C-terminal lobe (green) and N-terminal lobe (silver) of the HECT domain." scene="84/848928/Overallcolored/14"> | ||
+ | __TOC__ | ||
==Introduction== | ==Introduction== | ||
'''WWP2''' (WW domain-containing protein 2) is a type of [[ubiquitin protein ligase]]. Ubiquitination can serve as a signal for degradation, lead to translocation within the cell, and result in altered activity and altered protein-protein interactions. The ubiquitination pathway comprises of ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin-ligating (E3) enzymes. WWP2 is a member of the HECT ('''H'''omologous to the '''E'''6-AP '''C'''arboxyl '''T'''erminus) E3 Ligase class of enzymes. HECT E3 Ligases accept a [[ubiquitin]] molecule from E2 enzymes and transfer the ubiquitin to a Lysine residue in the target signaling molecule or transcription factor <ref>PMID:15021885</ref>. | '''WWP2''' (WW domain-containing protein 2) is a type of [[ubiquitin protein ligase]]. Ubiquitination can serve as a signal for degradation, lead to translocation within the cell, and result in altered activity and altered protein-protein interactions. The ubiquitination pathway comprises of ubiquitin-activating (E1), ubiquitin-conjugating (E2) and ubiquitin-ligating (E3) enzymes. WWP2 is a member of the HECT ('''H'''omologous to the '''E'''6-AP '''C'''arboxyl '''T'''erminus) E3 Ligase class of enzymes. HECT E3 Ligases accept a [[ubiquitin]] molecule from E2 enzymes and transfer the ubiquitin to a Lysine residue in the target signaling molecule or transcription factor <ref>PMID:15021885</ref>. | ||
Line 19: | Line 20: | ||
This linker plays an autoinhibitory role. The ground state conformation of the protein has the 2,3-linker close to the N-lobe, while WW1 and WW2 domains block the N lobe’s ubiquitin-binding site. Upon phosphorylation the 2,3-linker changes conformation, moving further from the N lobe, allowing the protein to bind ubiquitin in the E2 and N lobe binding sites. This binding will further open the protein up to bind possible substrates, like PTEN. | This linker plays an autoinhibitory role. The ground state conformation of the protein has the 2,3-linker close to the N-lobe, while WW1 and WW2 domains block the N lobe’s ubiquitin-binding site. Upon phosphorylation the 2,3-linker changes conformation, moving further from the N lobe, allowing the protein to bind ubiquitin in the E2 and N lobe binding sites. This binding will further open the protein up to bind possible substrates, like PTEN. | ||
Interactions between the hinge and the 2,3-linker appear to restrict flexibility of the C-lobe which is necessary for ubiquitin transferase activity. This interaction further locks the protein into the T position. A current model of WWP2 activation by Chen et. al. proposes the following: (1) autoinhibited WWP2 gets phosphorylated at the 2,3-linker, (2) loosening of the 2,3-linker interactions with the hinge and ubiquitin binding exosite allow ubiquitin to bind in the C-lobe, (3) the target substrate protein binds with specifity towards the WW domains, (4) the substrate protein gets ubiquitinated, and (5) the 2,3-linker gets dephosphorylated, allowing WWP2 to return to the autoinhibited ground state conformation. <ref>PMID:28475870</ref> | Interactions between the hinge and the 2,3-linker appear to restrict flexibility of the C-lobe which is necessary for ubiquitin transferase activity. This interaction further locks the protein into the T position. A current model of WWP2 activation by Chen et. al. proposes the following: (1) autoinhibited WWP2 gets phosphorylated at the 2,3-linker, (2) loosening of the 2,3-linker interactions with the hinge and ubiquitin binding exosite allow ubiquitin to bind in the C-lobe, (3) the target substrate protein binds with specifity towards the WW domains, (4) the substrate protein gets ubiquitinated, and (5) the 2,3-linker gets dephosphorylated, allowing WWP2 to return to the autoinhibited ground state conformation. <ref>PMID:28475870</ref> | ||
- | + | ||
== Relevance == | == Relevance == | ||
Mutations in the NEDD4 family of proteins have been associated with several cancers and immune disorders. Many of these mutations occur in the 2,3-linker/HECT autoinhibited domains and the modified activity of the E3 Ligases as a result of these mutations can lead to an increase in the growth of tumor cells. WWP2 may play a role in the regulation of oncogenic signaling pathways through interactions with its substrate [[PTEN]], a tumor suppressor in the [[PI3K]] pathway. The downregulation of voltage-gated sodium channels by WWP2 and other members of the NEDD4 family is an active area of research. Other known targets of WWP2 include SMADs, OCT4, EGR2, and TIRF. <ref>PMID:25216927</ref> | Mutations in the NEDD4 family of proteins have been associated with several cancers and immune disorders. Many of these mutations occur in the 2,3-linker/HECT autoinhibited domains and the modified activity of the E3 Ligases as a result of these mutations can lead to an increase in the growth of tumor cells. WWP2 may play a role in the regulation of oncogenic signaling pathways through interactions with its substrate [[PTEN]], a tumor suppressor in the [[PI3K]] pathway. The downregulation of voltage-gated sodium channels by WWP2 and other members of the NEDD4 family is an active area of research. Other known targets of WWP2 include SMADs, OCT4, EGR2, and TIRF. <ref>PMID:25216927</ref> | ||
- | + | </StructureSection> | |
== References == | == References == | ||
<references/> | <references/> |
Revision as of 20:12, 1 July 2020
|
References
- ↑ Ingham RJ, Gish G, Pawson T. The Nedd4 family of E3 ubiquitin ligases: functional diversity within a common modular architecture. Oncogene. 2004 Mar 15;23(11):1972-84. doi: 10.1038/sj.onc.1207436. PMID:15021885 doi:http://dx.doi.org/10.1038/sj.onc.1207436
- ↑ Chen Z, Jiang H, Xu W, Li X, Dempsey DR, Zhang X, Devreotes P, Wolberger C, Amzel LM, Gabelli SB, Cole PA. A Tunable Brake for HECT Ubiquitin Ligases. Mol Cell. 2017 May 4;66(3):345-357.e6. doi: 10.1016/j.molcel.2017.03.020. PMID:28475870 doi:http://dx.doi.org/10.1016/j.molcel.2017.03.020
- ↑ Chen W, Jiang X, Luo Z. WWP2: a multifunctional ubiquitin ligase gene. Pathol Oncol Res. 2014 Oct;20(4):799-803. doi: 10.1007/s12253-014-9838-y. Epub, 2014 Sep 13. PMID:25216927 doi:http://dx.doi.org/10.1007/s12253-014-9838-y
Proteopedia Page Contributors and Editors (what is this?)
Tihitina Y Aytenfisu, Hannah Campbell, Sandra B. Gabelli, Michal Harel