SARS-CoV-2 spike protein fusion transformation
From Proteopedia
(Difference between revisions)
Line 12: | Line 12: | ||
<scene name='85/857791/Pre-fusion_6xr8/2'>Domains are colored</scene> (from Cai, Zhang et al. <ref name="cai-zhang" />): | <scene name='85/857791/Pre-fusion_6xr8/2'>Domains are colored</scene> (from Cai, Zhang et al. <ref name="cai-zhang" />): | ||
* 14-306: <b><font color="#0040e0">N-terminal domain</font></b>. | * 14-306: <b><font color="#0040e0">N-terminal domain</font></b>. | ||
- | * 307-330: <b><font color="# | + | * 307-330: <b><font color="#808080">Linker</font></b>. |
* 331-528: <b><font color="#e040e0">Receptor binding domain</font></b>, binds to angiotensin converting enzyme 2 (ACE2). | * 331-528: <b><font color="#e040e0">Receptor binding domain</font></b>, binds to angiotensin converting enzyme 2 (ACE2). | ||
* 529-591: <b><font color="#00a000">CTD1</font></b> (C terminal region of S1 fragment after furin cleavage). | * 529-591: <b><font color="#00a000">CTD1</font></b> (C terminal region of S1 fragment after furin cleavage). | ||
* 592-676: <b><font color="#60d060">CTD2</font></b> (C terminus of S1 fragment after furin cleavage). | * 592-676: <b><font color="#60d060">CTD2</font></b> (C terminus of S1 fragment after furin cleavage). | ||
- | * | + | * 677-688: Furin cleavage site PRRAR (missing in this model due to disorder). |
- | * | + | * 689-816: <b><font color="#70d0e0">Linker</font></b> |
- | * | + | * 817-825: <b><font color="#00ffff">Fusion peptide (FP)</font></b>. |
- | * | + | * 826-834: <b><font color="#00d0ff">Fusion peptide proximal region (FPPR)</font></b>. |
+ | * 835-910: <b><font color="#c8d8e0">Linker</font></b> | ||
Revision as of 19:03, 4 August 2020
This page is under construction starting August 3, 2020.
The spike protein of SARS-CoV-2 plays a central role in coronavirus attachment to the ACE2 receptor on host cells, and in getting the RNA genome of the virus into the host cell via fusion of the virus and host cell membranes, initiating infection.
|
References
- ↑ 1.0 1.1 1.2 Cai Y, Zhang J, Xiao T, Peng H, Sterling SM, Walsh RM Jr, Rawson S, Rits-Volloch S, Chen B. Distinct conformational states of SARS-CoV-2 spike protein. Science. 2020 Jul 21. pii: science.abd4251. doi: 10.1126/science.abd4251. PMID:32694201 doi:http://dx.doi.org/10.1126/science.abd4251
- ↑ Fan X, Cao D, Kong L, Zhang X. Cryo-EM analysis of the post-fusion structure of the SARS-CoV spike glycoprotein. Nat Commun. 2020 Jul 17;11(1):3618. doi: 10.1038/s41467-020-17371-6. PMID:32681106 doi:http://dx.doi.org/10.1038/s41467-020-17371-6
- ↑ Walls AC, Tortorici MA, Snijder J, Xiong X, Bosch BJ, Rey FA, Veesler D. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11157-11162. doi:, 10.1073/pnas.1708727114. Epub 2017 Oct 3. PMID:29073020 doi:http://dx.doi.org/10.1073/pnas.1708727114
- ↑ Pabis A, Rawle RJ, Kasson PM. Influenza hemagglutinin drives viral entry via two sequential intramembrane mechanisms. Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7200-7207. doi:, 10.1073/pnas.1914188117. Epub 2020 Mar 18. PMID:32188780 doi:http://dx.doi.org/10.1073/pnas.1914188117