6vgb
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==De novo designed Rossmann fold protein ROS2_36830== | ==De novo designed Rossmann fold protein ROS2_36830== | ||
- | <StructureSection load='6vgb' size='340' side='right'caption='[[6vgb]]' scene=''> | + | <StructureSection load='6vgb' size='340' side='right'caption='[[6vgb]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> |
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>Full | + | <table><tr><td colspan='2'>[[6vgb]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Synthetic_construct_sequences Synthetic construct sequences]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6VGB OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6VGB FirstGlance]. <br> |
</td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6vgb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6vgb OCA], [http://pdbe.org/6vgb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6vgb RCSB], [http://www.ebi.ac.uk/pdbsum/6vgb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6vgb ProSAT]</span></td></tr> | </td></tr><tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6vgb FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6vgb OCA], [http://pdbe.org/6vgb PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6vgb RCSB], [http://www.ebi.ac.uk/pdbsum/6vgb PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6vgb ProSAT]</span></td></tr> | ||
</table> | </table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Naturally occurring proteins vary the precise geometries of structural elements to create distinct shapes optimal for function. We present a computational design method, loop-helix-loop unit combinatorial sampling (LUCS), that mimics nature's ability to create families of proteins with the same overall fold but precisely tunable geometries. Through near-exhaustive sampling of loop-helix-loop elements, LUCS generates highly diverse geometries encompassing those found in nature but also surpassing known structure space. Biophysical characterization showed that 17 (38%) of 45 tested LUCS designs encompassing two different structural topologies were well folded, including 16 with designed non-native geometries. Four experimentally solved structures closely matched the designs. LUCS greatly expands the designable structure space and offers a new paradigm for designing proteins with tunable geometries that may be customizable for novel functions. | ||
+ | |||
+ | Expanding the space of protein geometries by computational design of de novo fold families.,Pan X, Thompson MC, Zhang Y, Liu L, Fraser JS, Kelly MJS, Kortemme T Science. 2020 Aug 28;369(6507):1132-1136. doi: 10.1126/science.abc0881. PMID:32855341<ref>PMID:32855341</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6vgb" style="background-color:#fffaf0;"></div> | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
- | [[Category: Kelly M]] | + | [[Category: Synthetic construct sequences]] |
- | [[Category: Kortemme T]] | + | [[Category: Kelly, M]] |
- | [[Category: Pan X]] | + | [[Category: Kortemme, T]] |
- | [[Category: Zhang Y]] | + | [[Category: Pan, X]] |
+ | [[Category: Zhang, Y]] | ||
+ | [[Category: De novo protein]] | ||
+ | [[Category: Rossmann fold]] |
Revision as of 09:54, 9 September 2020
De novo designed Rossmann fold protein ROS2_36830
|