6kzu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='6kzu' size='340' side='right'caption='[[6kzu]], [[Resolution|resolution]] 1.79&Aring;' scene=''>
<StructureSection load='6kzu' size='340' side='right'caption='[[6kzu]], [[Resolution|resolution]] 1.79&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6kzu]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6KZU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6KZU FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6kzu]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6KZU OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6KZU FirstGlance]. <br>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=2JN:2-METHYL-D-NORLEUCINE'>2JN</scene>, <scene name='pdbligand=DAL:D-ALANINE'>DAL</scene>, <scene name='pdbligand=DGL:D-GLUTAMIC+ACID'>DGL</scene>, <scene name='pdbligand=DLE:D-LEUCINE'>DLE</scene>, <scene name='pdbligand=DSG:D-ASPARAGINE'>DSG</scene>, <scene name='pdbligand=DTY:D-TYROSINE'>DTY</scene>, <scene name='pdbligand=E03:'>E03</scene>, <scene name='pdbligand=MK8:2-METHYL-L-NORLEUCINE'>MK8</scene>, <scene name='pdbligand=TDF:4-(TRIFLUOROMETHYL)-D-PHENYLALANINE'>TDF</scene></td></tr>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=2JN:2-METHYL-D-NORLEUCINE'>2JN</scene>, <scene name='pdbligand=DAL:D-ALANINE'>DAL</scene>, <scene name='pdbligand=DGL:D-GLUTAMIC+ACID'>DGL</scene>, <scene name='pdbligand=DLE:D-LEUCINE'>DLE</scene>, <scene name='pdbligand=DSG:D-ASPARAGINE'>DSG</scene>, <scene name='pdbligand=DTY:D-TYROSINE'>DTY</scene>, <scene name='pdbligand=E03:'>E03</scene>, <scene name='pdbligand=MK8:2-METHYL-L-NORLEUCINE'>MK8</scene>, <scene name='pdbligand=TDF:4-(TRIFLUOROMETHYL)-D-PHENYLALANINE'>TDF</scene></td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">MDM2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/RING-type_E3_ubiquitin_transferase RING-type E3 ubiquitin transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.2.27 2.3.2.27] </span></td></tr>
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/RING-type_E3_ubiquitin_transferase RING-type E3 ubiquitin transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.3.2.27 2.3.2.27] </span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6kzu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6kzu OCA], [http://pdbe.org/6kzu PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6kzu RCSB], [http://www.ebi.ac.uk/pdbsum/6kzu PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6kzu ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6kzu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6kzu OCA], [http://pdbe.org/6kzu PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6kzu RCSB], [http://www.ebi.ac.uk/pdbsum/6kzu PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6kzu ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
Line 12: Line 13:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/MDM2_HUMAN MDM2_HUMAN]] E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.<ref>PMID:12821780</ref> <ref>PMID:15053880</ref> <ref>PMID:15195100</ref> <ref>PMID:16337594</ref> <ref>PMID:15632057</ref> <ref>PMID:17290220</ref> <ref>PMID:19098711</ref> <ref>PMID:19219073</ref> <ref>PMID:19965871</ref> <ref>PMID:20858735</ref> <ref>PMID:20173098</ref>
[[http://www.uniprot.org/uniprot/MDM2_HUMAN MDM2_HUMAN]] E3 ubiquitin-protein ligase that mediates ubiquitination of p53/TP53, leading to its degradation by the proteasome. Inhibits p53/TP53- and p73/TP73-mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. Also acts as an ubiquitin ligase E3 toward itself and ARRB1. Permits the nuclear export of p53/TP53. Promotes proteasome-dependent ubiquitin-independent degradation of retinoblastoma RB1 protein. Inhibits DAXX-mediated apoptosis by inducing its ubiquitination and degradation. Component of the TRIM28/KAP1-MDM2-p53/TP53 complex involved in stabilizing p53/TP53. Also component of the TRIM28/KAP1-ERBB4-MDM2 complex which links growth factor and DNA damage response pathways. Mediates ubiquitination and subsequent proteasome degradation of DYRK2 in nucleus. Ubiquitinates IGF1R and promotes it to proteasomal degradation.<ref>PMID:12821780</ref> <ref>PMID:15053880</ref> <ref>PMID:15195100</ref> <ref>PMID:16337594</ref> <ref>PMID:15632057</ref> <ref>PMID:17290220</ref> <ref>PMID:19098711</ref> <ref>PMID:19219073</ref> <ref>PMID:19965871</ref> <ref>PMID:20858735</ref> <ref>PMID:20173098</ref>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Peptide-based molecules hold great potential as targeted inhibitors of intracellular protein-protein interactions (PPIs). Indeed, the vast diversity of chemical space conferred through their primary, secondary and tertiary structures allows these molecules to be applied to targets that are typically deemed intractable via small molecules. However, the development of peptide therapeutics has been hindered by their limited conformational stability, proteolytic sensitivity and cell permeability. Several contemporary peptide design strategies are aimed at addressing these issues. Strategic macrocyclization through optimally placed chemical braces such as olefinic hydrocarbon crosslinks, commonly referred to as staples, may improve peptide properties by (i) restricting conformational freedom to improve target affinities, (ii) improving proteolytic resistance, and (iii) enhancing cell permeability. As a second strategy, molecules constructed entirely from d-amino acids are hyper-resistant to proteolytic cleavage, but generally lack conformational stability and membrane permeability. Since neither approach is a complete solution, we have combined these strategies to identify the first examples of all-d alpha-helical stapled and stitched peptides. As a template, we used a recently reported all d-linear peptide that is a potent inhibitor of the p53-Mdm2 interaction, but is devoid of cellular activity. To design both stapled and stitched all-d-peptide analogues, we used computational modelling to predict optimal staple placement. The resultant novel macrocyclic all d-peptide was determined to exhibit increased alpha-helicity, improved target binding, complete proteolytic stability and, most notably, cellular activity.
 +
 +
Macrocyclization of an all-d linear alpha-helical peptide imparts cellular permeability.,Kannan S, Aronica PGA, Ng S, Gek Lian DT, Frosi Y, Chee S, Shimin J, Yuen TY, Sadruddin A, Kaan HYK, Chandramohan A, Wong JH, Tan YS, Chang ZW, Ferrer-Gago FJ, Arumugam P, Han Y, Chen S, Renia L, Brown CJ, Johannes CW, Henry B, Lane DP, Sawyer TK, Verma CS, Partridge AW Chem Sci. 2020 May 11;11(21):5577-5591. doi: 10.1039/c9sc06383h. eCollection 2020, Jun 7. PMID:32874502<ref>PMID:32874502</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6kzu" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[MDM2 3D structures|MDM2 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Human]]
[[Category: Large Structures]]
[[Category: Large Structures]]
[[Category: RING-type E3 ubiquitin transferase]]
[[Category: RING-type E3 ubiquitin transferase]]

Revision as of 07:31, 4 November 2020

Macrocyclization of an all-D linear peptide improves target affinity and imparts cellular activity: A novel stapled alpha-helical peptide modality

PDB ID 6kzu

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools