Taylor SARS-CoV2 Protease

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (20:53, 17 November 2020) (edit) (undo)
 
Line 3: Line 3:
The coronavirus ORF 1 polyprotein can be divided into an N-terminal region that is processed by one or two Papain-like proteases and a C-terminal region which is processed by the main protease. <ref> Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78. </ref> While papain-like protease(s) cleave only three sites, the main protease cleaves 11 sites in the polyprotein to generate functional proteins. Additionally, the main protease cleaves its own N- and C-terminal autoprocessing sites. The cleaved functional proteins include viral enzymes needed for replication such as the RNA-dependant RNA polymerase, a helicase and other non-structural or accessory proteins such as an exoribonuclease, an endoribonuclease, a ssRNA binding protein and a 2’-O-ribose methyltransferase. <ref> Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002. </ref>
The coronavirus ORF 1 polyprotein can be divided into an N-terminal region that is processed by one or two Papain-like proteases and a C-terminal region which is processed by the main protease. <ref> Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78. </ref> While papain-like protease(s) cleave only three sites, the main protease cleaves 11 sites in the polyprotein to generate functional proteins. Additionally, the main protease cleaves its own N- and C-terminal autoprocessing sites. The cleaved functional proteins include viral enzymes needed for replication such as the RNA-dependant RNA polymerase, a helicase and other non-structural or accessory proteins such as an exoribonuclease, an endoribonuclease, a ssRNA binding protein and a 2’-O-ribose methyltransferase. <ref> Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002. </ref>
-
== Overall Structure and Active Centre of M protease ==
+
== Overall Structure and Active Site of M protease ==
The main protease is a cysteine protease that is essential for the viral life cycle. It is folded like an augmented serine-protease which forms a homodimer consisting of the perpendicular protomers A and B. One protomer consists of <scene name='86/866577/Domains/2'>three domains</scene>. Domain I and II (N-terminal domain) form an antiparallel chymotrypsin-like ß-barrel structure. Domain III (C-terminal end) consist of five alpha-helices arranged in an antiparallel cluster. <ref> Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc Natl Acad Sci U S A. 100, 13190–13195. </ref> <ref name=”Xu”> Xu, T., Ooi, A., Lee, H. C., Wilmouth, R., Liu, D. X. & Lescar, J. (2005). Acta Crystallogr Sect F Struct Biol Cryst Commun. 61, 964–966. </ref> For maximal protease activity, the protease forms a homodimer as the substrate binding site is located in a catalytic cleft between the two N-terminal ß-barrel structures (between domain I and II). The substrate binding site involves a <scene name='86/866577/Active_site/2'>catalytic dyad</scene> consisting of the residues Cys145 and His41. The N- and C-terminal domains are connected by a long loop. <ref> Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Science. 300, 1763–1767. </ref> N-terminal residues of each protomer which are called N-finger, make contact between the N- and C-terminal domains of the other protomer and thus are necessary for dimerization.
The main protease is a cysteine protease that is essential for the viral life cycle. It is folded like an augmented serine-protease which forms a homodimer consisting of the perpendicular protomers A and B. One protomer consists of <scene name='86/866577/Domains/2'>three domains</scene>. Domain I and II (N-terminal domain) form an antiparallel chymotrypsin-like ß-barrel structure. Domain III (C-terminal end) consist of five alpha-helices arranged in an antiparallel cluster. <ref> Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc Natl Acad Sci U S A. 100, 13190–13195. </ref> <ref name=”Xu”> Xu, T., Ooi, A., Lee, H. C., Wilmouth, R., Liu, D. X. & Lescar, J. (2005). Acta Crystallogr Sect F Struct Biol Cryst Commun. 61, 964–966. </ref> For maximal protease activity, the protease forms a homodimer as the substrate binding site is located in a catalytic cleft between the two N-terminal ß-barrel structures (between domain I and II). The substrate binding site involves a <scene name='86/866577/Active_site/2'>catalytic dyad</scene> consisting of the residues Cys145 and His41. The N- and C-terminal domains are connected by a long loop. <ref> Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Science. 300, 1763–1767. </ref> N-terminal residues of each protomer which are called N-finger, make contact between the N- and C-terminal domains of the other protomer and thus are necessary for dimerization.

Current revision

Main protease from SARS-CoV2 (PDB entry 6y2e)

Drag the structure with the mouse to rotate

References

  1. Guo, Y.-R., Cao, Q.-D., Hong, Z.-S., Tan, Y.-Y., Chen, S.-D., Jin, H.-J., Tan, K.-S., Wang, D.-Y. & Yan, Y. (2020). Mil Med Res. 7.
  2. Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S. C. & Di Napoli, R. (2020). StatPearls, Vol. p. Treasure Island (FL): StatPearls Publishing.
  3. Enjuanes, L., (2005). Coronavirus replication and reverse genetics Berlin; New York: Springer, S. 69-78.
  4. Muramatsu, T., Takemoto, C., Kim, Y.-T., Wang, H., Nishii, W., Terada, T., Shirouzu, M. & Yokoyama, S. (2016). Proc Natl Acad Sci U S A. 113, 12997–13002.
  5. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., Gao, G. F., Anand, K., Bartlam, M., Hilgenfeld, R. & Rao, Z. (2003). Proc Natl Acad Sci U S A. 100, 13190–13195.
  6. Xu, T., Ooi, A., Lee, H. C., Wilmouth, R., Liu, D. X. & Lescar, J. (2005). Acta Crystallogr Sect F Struct Biol Cryst Commun. 61, 964–966.
  7. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R. & Hilgenfeld, R. (2003). Science. 300, 1763–1767.
  8. Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., Liang, W., Zhao, Q., Zhou, Z., Pei, D., Ziebuhr, J., Hilgenfeld, R., Yuen, K. Y., Wong, L., Gao, G., Chen, S., Chen, Z., Ma, D., Bartlam, M. & Rao, Z. (2005). PLoS Biol. 3.
  9. Gorbalenya, A. E., Snijder, E. J. & Ziebuhr, J. (2000). Journal of General Virology. 81, 853–879.
  10. Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., Shen, W., Li, J., Zhou, Z., Ding, Y., Zhao, Q., Zhang, X. C., Liao, M., Bartlam, M. & Rao, Z. (2008). Journal of Virology. 82, 2515–2527.
  11. Rut, W., Groborz, K., Zhang, L., Sun, X., Zmudzinski, M., Hilgenfeld, R. & Drag, M. (2020). BioRxiv. 2020.03.07.981928.
  12. Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K. & Hilgenfeld, R. (2020). Science.
  13. Dayer, M. R., Taleb-Gassabi, S. & Dayer, M. S. (2017). Lopinavir; A Potent Drug against Coronavirus Infection: Insight from Molecular Docking Study.
  14. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, Ruan L, Song B, Cai Y, Wei M, Li X, Xia J, Chen N, Xiang J, Yu T, Bai T, Xie X, Zhang L, Li C, Yuan Y, Chen H, Li H, Huang H, Tu S, Gong F, Liu Y, Wei Y, Dong C, Zhou F, Gu X, Xu J, Liu Z, Zhang Y, Li H, Shang L, Wang K, Li K, Zhou X, Dong X, Qu Z, Lu S, Hu X, Ruan S, Luo S, Wu J, Peng L, Cheng F, Pan L, Zou J, Jia C, Wang J, Liu X, Wang S, Wu X, Ge Q, He J, Zhan H, Qiu F, Guo L, Huang C, Jaki T, Hayden FG, Horby PW, Zhang D, Wang C. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med. 2020 May 7;382(19):1787-1799. doi: 10.1056/NEJMoa2001282. Epub 2020, Mar 18. PMID:32187464 doi:http://dx.doi.org/10.1056/NEJMoa2001282

Proteopedia Page Contributors and Editors (what is this?)

Ann Taylor

Personal tools