Sandbox Reserved 1640

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 25: Line 25:
== Other important features ==
== Other important features ==
-
The enzyme prevents decarboxylation by keeping the CO2 on the structure. You can see this in scheme 1 where it breaks the double O bond on Carbon 4 and makes it alcohol and keeps the CO2 on the sugar structure. Another structural mechanism characteristic is that this protein has a lot of stacking. '''Hydrogen bond stacking benefits''' this protein by making it more structurally sound by helping the protein regulate electronegativity. You can see this on our protein in figure 2.A the block dotted lines are representing the hydrogen bonds in the structure. Figure 1 also shows that the crevice between the 2 domains encloses the active site. The crevice also denotes the hydrophobic interactions within the protein's 2 <scene name='86/861622/Hydrophobic_interface/2'>polypeptide faces</scene>. Hydrophobic interactions mean that the amino acids that have nonpolar r groups cluster together, on the inside of the protein. This leaves the hydrophilic amino acids on the outside of the structure. I saw a perfect example of this in figure 2. A, and 2.D. the protein we are studying contains F,Y, and L. Our protein also contains an '''enzyme-substrate''' complex. This is when an enzyme binds to the substrate and forms a complex. The result of the complex-forming causes the decrease in activation energy of the reaction and causes other ions and chemical groups to form covalent bonds creating additional steps in the process. This is shown in our protein in figure 7. In the presence of UDP-Glc, the enzyme closes over the substrate changing the position compared to the UDP- bound enzyme.
+
The enzyme prevents decarboxylation by keeping the CO2 on the structure. You can see this in scheme 1 where it breaks the double O bond on Carbon 4 and makes it alcohol and keeps the CO2 on the sugar structure. Another structural mechanism characteristic is that this protein has a lot of stacking. '''Hydrogen bond stacking benefits''' this protein by making it more structurally sound by helping the protein regulate electronegativity. You can see this on our protein in figure 2.A the block dotted lines are representing the hydrogen bonds in the structure. Figure 1 also shows that the crevice between the 2 domains encloses the active site. The crevice also denotes the hydrophobic interactions within the protein's 2 <scene name='86/861622/Hydrophobic_interface/2'>polypeptide faces</scene>. Hydrophobic interactions mean that the amino acids that have nonpolar r groups cluster together, on the inside of the protein. This leaves the hydrophilic amino acids on the outside of the structure. I saw a perfect example of this in figure 2. A, and 2.D. the protein we are studying contains F,Y, and L. Our protein also contains an '''enzyme-substrate''' complex. This is when an enzyme binds to the substrate and forms a complex. The result of the complex-forming causes the decrease in activation energy of the reaction and causes other ions and chemical groups to form covalent bonds creating additional steps in the process. This is shown in our protein in figure 7. In the presence of UDP-Glc, the enzyme closes over the substrate changing the position compared to the UDP- bound enzyme. There also is a C-terminal domain. whereas the smaller <scene name='86/861622/C-terminal_domain/1'>C-terminal</scene> domain provides the
-
 
+
the binding site for the UDP-GlcA substrate.
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes.

Revision as of 03:11, 8 December 2020

This Sandbox is Reserved from 09/18/2020 through 03/20/2021 for use in CHEM 351 Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, IA. This reservation includes Sandbox Reserved 1628 through Sandbox Reserved 1642.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Your Heading Here (maybe something like 'Structure')

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools