Sandbox Reserved 1653

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 68: Line 68:
==='''Ion conducting pore'''===
==='''Ion conducting pore'''===
-
The central pore axis of piezo1 is lined with the extracellular cap domain, inner helix and cytosolic CTD. The extracellular cations can approach
+
The <scene name='86/868186/Ion_conducting_pore/1'>central pore axis</scene> of piezo1 is lined with the <scene name='86/868186/Ced/1'>extracellular cap domain</scene>, inner helix and cytosolic <scene name='86/868186/Ctd/1'>CTD</scene>. The extracellular cations can approach
-
the pore entry “vertically through the internal cavity along the threefold axis of the cap domain”, they can also approach laterally through spaces (gaps) between the flexible linkers which connect the cap with inner and outer helices.[2] The ion conduction pathway is situated below the cap, and is
+
the pore entry “vertically through the internal cavity along the threefold axis of the cap domain”, they can also approach laterally through spaces (gaps) between the flexible linkers which connect the cap with inner and outer helices.[2] The <scene name='86/868186/Ion_conducting_pore/1'>ion conduction pathway</scene> is situated below the <scene name='86/868186/Ced/1'>cap</scene>, and is
lined by the three inner transmembrane helices. The possible access for lipids or other hydrophobic molecules through the pore could be “two lateral openings between the inner helices separated by a ‘seal’ formed by K2479 and F2480”. These openings are approximately 11 Å wide and 16 Å tall.
lined by the three inner transmembrane helices. The possible access for lipids or other hydrophobic molecules through the pore could be “two lateral openings between the inner helices separated by a ‘seal’ formed by K2479 and F2480”. These openings are approximately 11 Å wide and 16 Å tall.

Revision as of 09:54, 9 January 2021

Piezo 1

Drag the structure with the mouse to rotate

References

  1. 1.0 1.1 1.2 Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, Zhang M, Xiao B. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels. Neuron. 2016 Mar 16;89(6):1248-1263. doi: 10.1016/j.neuron.2016.01.046. Epub 2016, Feb 25. PMID:26924440 doi:http://dx.doi.org/10.1016/j.neuron.2016.01.046
  2. 2.0 2.1 Parpaite T, Coste B. Piezo channels. Curr Biol. 2017 Apr 3;27(7):R250-R252. doi: 10.1016/j.cub.2017.01.048. PMID:28376327 doi:http://dx.doi.org/10.1016/j.cub.2017.01.048
  3. 3.0 3.1 Wei L, Mousawi F, Li D, Roger S, Li J, Yang X, Jiang LH. Adenosine Triphosphate Release and P2 Receptor Signaling in Piezo1 Channel-Dependent Mechanoregulation. Front Pharmacol. 2019 Nov 6;10:1304. doi: 10.3389/fphar.2019.01304. eCollection, 2019. PMID:31780935 doi:http://dx.doi.org/10.3389/fphar.2019.01304
  4. Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug, 21. PMID:31435018 doi:http://dx.doi.org/10.1038/s41586-019-1499-2
  5. 5.0 5.1 Zhou, Z. (2019). Structural Analysis of Piezo1 Ion Channel Reveals the Relationship between Amino Acid Sequence Mutations and Human Diseases. 139–155. DOI 10.4236/jbm.2019.712012
  6. Zhao Q, Zhou H, Chi S, Wang Y, Wang J, Geng J, Wu K, Liu W, Zhang T, Dong MQ, Wang J, Li X, Xiao B. Structure and mechanogating mechanism of the Piezo1 channel. Nature. 2018 Feb 22;554(7693):487-492. doi: 10.1038/nature25743. Epub 2018 Jan, 22. PMID:29469092 doi:http://dx.doi.org/10.1038/nature25743
  7. 7.0 7.1 7.2 7.3 Liang X, Howard J. Structural Biology: Piezo Senses Tension through Curvature. Curr Biol. 2018 Apr 23;28(8):R357-R359. doi: 10.1016/j.cub.2018.02.078. PMID:29689211 doi:http://dx.doi.org/10.1016/j.cub.2018.02.078
  8. Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017 Dec 12;6. pii: 33660. doi: 10.7554/eLife.33660. PMID:29231809 doi:http://dx.doi.org/10.7554/eLife.33660
  9. Guo YR, MacKinnon R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. Elife. 2017 Dec 12;6. pii: 33660. doi: 10.7554/eLife.33660. PMID:29231809 doi:http://dx.doi.org/10.7554/eLife.33660
  10. Lin YC, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230-234. doi: 10.1038/s41586-019-1499-2. Epub 2019 Aug, 21. PMID:31435018 doi:http://dx.doi.org/10.1038/s41586-019-1499-2
  11. Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature. 2015 Nov 5;527(7576):64-9. doi: 10.1038/nature15247. Epub 2015 Sep 21. PMID:26390154 doi:http://dx.doi.org/10.1038/nature15247
Personal tools