Sandbox Reserved 1643
From Proteopedia
(Difference between revisions)
												
			
			| Line 1: | Line 1: | ||
{{Sandbox_Reserved_ESBS20_}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE -->  | {{Sandbox_Reserved_ESBS20_}}<!-- PLEASE ADD YOUR CONTENT BELOW HERE -->  | ||
| - | == PET Hydrolase   | + | == PET Hydrolase ==  | 
<StructureSection load='6ane' size='340' side='right' caption='PET Hydrolase' scene=''>  | <StructureSection load='6ane' size='340' side='right' caption='PET Hydrolase' scene=''>  | ||
One of the world's current biggest problems is the recycling of plastic. The stability of the polymers, their crystallinity and their hydrophilic surface make recycling difficult. Polyethylene terephthalate (PET) is one of the most widely used plastics today (around 30 million tons per year) and its recycling is now possible thanks to PET hydrolase, an enzyme isolated from the bacteria ''Ideonella sakaiensis'' <ref name="New insights">DOI:10.1128/AEM.02773-17</ref>.  | One of the world's current biggest problems is the recycling of plastic. The stability of the polymers, their crystallinity and their hydrophilic surface make recycling difficult. Polyethylene terephthalate (PET) is one of the most widely used plastics today (around 30 million tons per year) and its recycling is now possible thanks to PET hydrolase, an enzyme isolated from the bacteria ''Ideonella sakaiensis'' <ref name="New insights">DOI:10.1128/AEM.02773-17</ref>.  | ||
| Line 18: | Line 18: | ||
==== '''Catalytic site''' ====  | ==== '''Catalytic site''' ====  | ||
| + | The catalytic site is composed of three amino acids  | ||
==== '''Disulfide bridges''' ====  | ==== '''Disulfide bridges''' ====  | ||
Revision as of 13:37, 14 January 2021
| This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664. | 
 To get started:
 More help: Help:Editing  | 
PET Hydrolase
  | |||||||||||
References
- ↑ Danso D, Schmeisser C, Chow J, Zimmermann W, Wei R, Leggewie C, Li X, Hazen T, Streit WR. New Insights into the Function and Global Distribution of Polyethylene Terephthalate (PET)-Degrading Bacteria and Enzymes in Marine and Terrestrial Metagenomes. Appl Environ Microbiol. 2018 Apr 2;84(8). pii: AEM.02773-17. doi:, 10.1128/AEM.02773-17. Print 2018 Apr 15. PMID:29427431 doi:http://dx.doi.org/10.1128/AEM.02773-17
 - ↑ 2.0 2.1 Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science. 2016 Mar 11;351(6278):1196-9. doi: 10.1126/science.aad6359. PMID:26965627 doi:http://dx.doi.org/10.1126/science.aad6359
 - ↑ Panda T, Gowrishankar BS. Production and applications of esterases. Appl Microbiol Biotechnol. 2005 Apr;67(2):160-9. doi: 10.1007/s00253-004-1840-y. , Epub 2005 Jan 4. PMID:15630579 doi:http://dx.doi.org/10.1007/s00253-004-1840-y
 - ↑ P. Dockrill, « Scientists Have Accidentally Created a Mutant Enzyme That Eats Plastic Waste », ScienceAlert. https://www.sciencealert.com/scientists-accidentally-engineered-mutant-enzyme-eats-through-plastic-pet-petase-pollution Retrieved 2021-01-11.
 - ↑ Kim JW, Park SB, Tran QG, Cho DH, Choi DY, Lee YJ, Kim HS. Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae. Microb Cell Fact. 2020 Apr 28;19(1):97. doi: 10.1186/s12934-020-01355-8. PMID:32345276 doi:http://dx.doi.org/10.1186/s12934-020-01355-8
 - ↑ Austin HP, Allen MD, Donohoe BS, Rorrer NA, Kearns FL, Silveira RL, Pollard BC, Dominick G, Duman R, El Omari K, Mykhaylyk V, Wagner A, Michener WE, Amore A, Skaf MS, Crowley MF, Thorne AW, Johnson CW, Woodcock HL, McGeehan JE, Beckham GT. Characterization and engineering of a plastic-degrading aromatic polyesterase. Proc Natl Acad Sci U S A. 2018 Apr 17. pii: 1718804115. doi:, 10.1073/pnas.1718804115. PMID:29666242 doi:http://dx.doi.org/10.1073/pnas.1718804115
 - ↑ 10.1016/j.bpj.2018.02.005
 - ↑ Cite error: Invalid 
<ref>tag; no text was provided for refs namedcurrent_and_futur_perspectives 
