Sandbox Reserved 1650

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
-
== Synthesis <ref>DOI https://doi.org/10.1016/0022-2836(87)90403-7</ref><refDOI 11581009</ref> <ref>DOI https://doi.org/10.1111/j.1432-1033.1987.tb11466.x</ref><ref>DOI 11479128</ref><ref>DOI https://doi.org/10.1016/0014-5793(82)80346-3</ref><ref>DOI 3016640</ref> ==
+
== Synthesis <ref>DOI https://doi.org/10.1016/0022-2836(87)90403-7</ref><ref>DOI 11581009</ref> <ref>DOI https://doi.org/10.1111/j.1432-1033.1987.tb11466.x</ref><ref>DOI 11479128</ref><ref>DOI https://doi.org/10.1016/0014-5793(82)80346-3</ref><ref>DOI 3016640</ref> ==
=== Role and composition of the thyroid gland ===
=== Role and composition of the thyroid gland ===
The thyroid gland is an endocrine organ located in the neck that secretes thyroid hormones into the bloodstream. Among them, T4 and T3 are involved in the growth, development and regulation of the metabolism of vertebrates.
The thyroid gland is an endocrine organ located in the neck that secretes thyroid hormones into the bloodstream. Among them, T4 and T3 are involved in the growth, development and regulation of the metabolism of vertebrates.
Line 16: Line 16:
=== Expression of the TG gene===
=== Expression of the TG gene===
-
Thyroid follicular cells synthesize human TG via the TG gene on chromosome 8 . [d-i]
+
Thyroid follicular cells synthesize human TG via the TG gene on chromosome 8.
== Composition and 3D structure ==
== Composition and 3D structure ==
Line 39: Line 39:
- two <scene name='86/868183/Site_a/1'>A sites</scene>, comprising two fixed donor tyrosines Y234 and Y149 and one flexible acceptor tyrosine: T24 [[https://www.youtube.com/watch?v=98MKFRc6S_w&list=PLMGnv0h7EIJydYifu7JSxrkXMzpwlkyDF&index=4>SIte A]]
- two <scene name='86/868183/Site_a/1'>A sites</scene>, comprising two fixed donor tyrosines Y234 and Y149 and one flexible acceptor tyrosine: T24 [[https://www.youtube.com/watch?v=98MKFRc6S_w&list=PLMGnv0h7EIJydYifu7JSxrkXMzpwlkyDF&index=4>SIte A]]
-
- two B sites, including one Y2573 donor and one Y2540 acceptor [[https://www.youtube.com/watch?v=aNd32NLk9Fk&list=PLMGnv0h7EIJydYifu7JSxrkXMzpwlkyDF&index=3>Site B]]
+
- two <scene name='86/868183/Site_b/3'>B sites</scene>, including one Y2573 donor and one Y2540 acceptor [[https://www.youtube.com/watch?v=aNd32NLk9Fk&list=PLMGnv0h7EIJydYifu7JSxrkXMzpwlkyDF&index=3>Site B]]
- a C site, comprising both donor and acceptor tyrosine Y2766
- a C site, comprising both donor and acceptor tyrosine Y2766
Line 55: Line 55:
In the colloid, about 30 tyrosines out of the 66 tyrosines, each consisting of a phenol group, are iodized. The quantity of iodinated tyrosine depends however on the iodide concentration of the colloid. Indeed, one or two iodide ions can be covalently bound to the colloid and thus give a di (DIT) or mono-iodinated (MIT) phenol group. The iodination of the phenol groups is carried out by two membrane enzymes of the follicular cells: the double oxidase (DUOX) synthesizes the hydrogen peroxide H2O2 necessary for thyroid peroxidase (TPO).
In the colloid, about 30 tyrosines out of the 66 tyrosines, each consisting of a phenol group, are iodized. The quantity of iodinated tyrosine depends however on the iodide concentration of the colloid. Indeed, one or two iodide ions can be covalently bound to the colloid and thus give a di (DIT) or mono-iodinated (MIT) phenol group. The iodination of the phenol groups is carried out by two membrane enzymes of the follicular cells: the double oxidase (DUOX) synthesizes the hydrogen peroxide H2O2 necessary for thyroid peroxidase (TPO).
-
Due to the spatial conformation of TG, there is a transfer of di or mono iodinated aromatic ring from a donor tyrosine to a close acceptor diiodotyrosine for the 14 tyrosines of the hormonogenic sites. Acceptor iodinated tyrosines are DITs because they are deprotonated due to their 6.5 acid pka facilitating the acceptance reaction leading to the formation of quinol-ether bonds, whereas donor iodinated tyrosines are MITs with a pKa of 8.5<ref>DOI 10.1530/eje.0.1380227</ref>. [m]
+
Due to the spatial conformation of TG, there is a transfer of di or mono iodinated aromatic ring from a donor tyrosine to a close acceptor diiodotyrosine for the 14 tyrosines of the hormonogenic sites. Acceptor iodinated tyrosines are DITs because they are deprotonated due to their 6.5 acid pka facilitating the acceptance reaction leading to the formation of quinol-ether bonds, whereas donor iodinated tyrosines are MITs with a pKa of 8.5<ref>DOI 10.1530/eje.0.1380227</ref>.
At the end of the coupling, the donor tyrosines are left with a dehydroalanine.
At the end of the coupling, the donor tyrosines are left with a dehydroalanine.
Line 61: Line 61:
Once iodization and coupling have been performed, endocytosis of the colloid to the lysosome occurs. The TG is proteolyzed by cathepsin proteases<ref>DOI 266(30):20198-20204</ref> [a] and 7 TH are thus released from 14 mono- or di iodinated tyrosines.
Once iodization and coupling have been performed, endocytosis of the colloid to the lysosome occurs. The TG is proteolyzed by cathepsin proteases<ref>DOI 266(30):20198-20204</ref> [a] and 7 TH are thus released from 14 mono- or di iodinated tyrosines.
-
The hormone synthesis function of TG is thus particularly linked to its structure. Moreover, research shows that denaturation or a simple modification of its conformation prevents the formation of TH <ref>DOI 10.1016/0005-2795(73)90365-6</ref><ref>DOI 456595</ref>. [k]
+
The hormone synthesis function of TG is thus particularly linked to its structure. Moreover, research shows that denaturation or a simple modification of its conformation prevents the formation of TH <ref>DOI 10.1016/0005-2795(73)90365-6</ref><ref>DOI 456595</ref>.
-
[l]
+
==== Control ====
==== Control ====
-
The synthesis of TH from TG is stimulated by thyroid stimulating hormone (TSH) secreted by the pituitary gland, a gland of the brain. When the TSH receptor is activated, glycosylations leading to the mono iodination of tyrosines promote the synthesis of T3<ref>DOI 3182849</ref><ref>DI 10.1016/S0021-9258(18)46037-1</ref>. b][c]
+
The synthesis of TH from TG is stimulated by thyroid stimulating hormone (TSH) secreted by the pituitary gland, a gland of the brain. When the TSH receptor is activated, glycosylations leading to the mono iodination of tyrosines promote the synthesis of T3<ref>DOI 3182849</ref><ref>DI 10.1016/S0021-9258(18)46037-1</ref>.
On the other hand, if the amount of hormones is too high, a negative feedback is exerted on this process while a small amount of these hormones exerts a positive feedback.
On the other hand, if the amount of hormones is too high, a negative feedback is exerted on this process while a small amount of these hormones exerts a positive feedback.

Revision as of 19:04, 14 January 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Human thyroglobulin (TG)

Human thyroglobulin

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
  3. doi: https://dx.doi.org///doi.org/10.1016/0022-2836(87)90403-7
  4. Mendive FM, Rivolta CM, Moya CM, Vassart G, Targovnik HM. Genomic organization of the human thyroglobulin gene: the complete intron-exon structure. Eur J Endocrinol. 2001 Oct;145(4):485-96. doi: 10.1530/eje.0.1450485. PMID:11581009 doi:http://dx.doi.org/10.1530/eje.0.1450485
  5. doi: https://dx.doi.org///doi.org/10.1111/j.1432-1033.1987.tb11466.x
  6. van de Graaf SA, Ris-Stalpers C, Pauws E, Mendive FM, Targovnik HM, de Vijlder JJ. Up to date with human thyroglobulin. J Endocrinol. 2001 Aug;170(2):307-21. doi: 10.1677/joe.0.1700307. PMID:11479128 doi:http://dx.doi.org/10.1677/joe.0.1700307
  7. doi: https://dx.doi.org///doi.org/10.1016/0014-5793(82)80346-3
  8. Baas F, van Ommen GJ, Bikker H, Arnberg AC, de Vijlder JJ. The human thyroglobulin gene is over 300 kb long and contains introns of up to 64 kb. Nucleic Acids Res. 1986 Jul 11;14(13):5171-86. doi: 10.1093/nar/14.13.5171. PMID:3016640 doi:http://dx.doi.org/10.1093/nar/14.13.5171
  9. Di Jeso B, Ulianich L, Pacifico F, Leonardi A, Vito P, Consiglio E, Formisano S, Arvan P. Folding of thyroglobulin in the calnexin/calreticulin pathway and its alteration by loss of Ca2+ from the endoplasmic reticulum. Biochem J. 2003 Mar 1;370(Pt 2):449-58. doi: 10.1042/BJ20021257. PMID:12401114 doi:http://dx.doi.org/10.1042/BJ20021257
  10. de Vijlder JJ, den Hartog MT. Anionic iodotyrosine residues are required for iodothyronine synthesis. Eur J Endocrinol. 1998 Feb;138(2):227-31. doi: 10.1530/eje.0.1380227. PMID:9506870 doi:http://dx.doi.org/10.1530/eje.0.1380227
  11. Unknown PubmedID 20198-20204
  12. Rolland M, Montfort MF, Lissitzky S. Efficiency of thyroglobulin as a thyroid hormone-forming protein. Biochim Biophys Acta. 1973 Apr 20;303(2):338-47. doi:, 10.1016/0005-2795(73)90365-6. PMID:4710237 doi:http://dx.doi.org/10.1016/0005-2795(73)90365-6
  13. Maurizis JC, Marriq C, Michelot J, Rolland M, Lissitzky S. Thyroid peroxidase-induced thyroid hormone synthesis in relation to thyroglobulin structure. FEBS Lett. 1979 Jun 1;102(1):82-6. doi: 10.1016/0014-5793(79)80933-3. PMID:456595 doi:http://dx.doi.org/10.1016/0014-5793(79)80933-3
  14. Fassler CA, Dunn JT, Anderson PC, Fox JW, Dunn AD, Hite LA, Moore RC, Kim PS. Thyrotropin alters the utilization of thyroglobulin's hormonogenic sites. J Biol Chem. 1988 Nov 25;263(33):17366-71. PMID:3182849
  15. DI 10.1016/S0021-9258(18)46037-1
  16. Leboeuf R, Emerick LE, Martorella AJ, Tuttle RM. Impact of pregnancy on serum thyroglobulin and detection of recurrent disease shortly after delivery in thyroid cancer survivors. Thyroid. 2007 Jun;17(6):543-7. doi: 10.1089/thy.2007.0020. PMID:17614775 doi:http://dx.doi.org/10.1089/thy.2007.0020
  17. Matalon ST, Blank M, Levy Y, Carp HJ, Arad A, Burek L, Grunebaum E, Sherer Y, Ornoy A, Refetoff S, Weiss RE, Rose NR, Shoenfeld Y. The pathogenic role of anti-thyroglobulin antibody on pregnancy: evidence from an active immunization model in mice. Hum Reprod. 2003 May;18(5):1094-9. doi: 10.1093/humrep/deg210. PMID:12721190 doi:http://dx.doi.org/10.1093/humrep/deg210
  18. Kawasaki E, Yasui J, Tsurumaru M, Takashima H, Ikeoka T, Mori F, Akazawa S, Ueki I, Kobayashi M, Kuwahara H, Abiru N, Yamasaki H, Kawakami A. Sequential elevation of autoantibodies to thyroglobulin and glutamic acid decarboxylase in type 1 diabetes. World J Diabetes. 2013 Oct 15;4(5):227-30. doi: 10.4239/wjd.v4.i5.227. PMID:24147207 doi:http://dx.doi.org/10.4239/wjd.v4.i5.227
  19. Tomer Y, Greenberg DA, Concepcion E, Ban Y, Davies TF. Thyroglobulin is a thyroid specific gene for the familial autoimmune thyroid diseases. J Clin Endocrinol Metab. 2002 Jan;87(1):404-7. doi: 10.1210/jcem.87.1.8291. PMID:11788684 doi:http://dx.doi.org/10.1210/jcem.87.1.8291
  20. Heemstra KA, Liu YY, Stokkel M, Kievit J, Corssmit E, Pereira AM, Romijn JA, Smit JW. Serum thyroglobulin concentrations predict disease-free remission and death in differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2007 Jan;66(1):58-64. doi:, 10.1111/j.1365-2265.2006.02685.x. PMID:17201802 doi:http://dx.doi.org/10.1111/j.1365-2265.2006.02685.x
  21. Nascimento C, Borget I, Al Ghuzlan A, Deandreis D, Chami L, Travagli JP, Hartl D, Lumbroso J, Chougnet C, Lacroix L, Baudin E, Schlumberger M, Leboulleux S. Persistent disease and recurrence in differentiated thyroid cancer patients with undetectable postoperative stimulated thyroglobulin level. Endocr Relat Cancer. 2011 Mar 3;18(2):R29-40. doi: 10.1677/ERC-10-0292. Print, 2011 Apr. PMID:21183629 doi:http://dx.doi.org/10.1677/ERC-10-0292
  22. Torrigiani G, Doniach D, Roitt IM. Serum thyroglobulin levels in healthy subjects and in patients with thyroid disease. J Clin Endocrinol Metab. 1969 Mar;29(3):305-14. doi: 10.1210/jcem-29-3-305. PMID:5773064 doi:http://dx.doi.org/10.1210/jcem-29-3-305
  23. Pacini F, Lippi F, Formica N, Elisei R, Anelli S, Ceccarelli C, Pinchera A. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987 Dec;28(12):1888-91. PMID:3681445
  24. Morgenthaler NG, Froehlich J, Rendl J, Willnich M, Alonso C, Bergmann A, Reiners C. Technical evaluation of a new immunoradiometric and a new immunoluminometric assay for thyroglobulin. Clin Chem. 2002 Jul;48(7):1077-83. PMID:12089177
  25. Hughes DT, White ML, Miller BS, Gauger PG, Burney RE, Doherty GM. Influence of prophylactic central lymph node dissection on postoperative thyroglobulin levels and radioiodine treatment in papillary thyroid cancer. Surgery. 2010 Dec;148(6):1100-6; discussion 1006-7. doi:, 10.1016/j.surg.2010.09.019. PMID:21134539 doi:http://dx.doi.org/10.1016/j.surg.2010.09.019
  26. Galligan JP, Winship J, van Doorn T, Mortimer RH. A comparison of serum thyroglobulin measurements and whole body 131I scanning in the management of treated differentiated thyroid carcinoma. Aust N Z J Med. 1982 Aug;12(4):248-54. doi: 10.1111/j.1445-5994.1982.tb03805.x. PMID:6814409 doi:http://dx.doi.org/10.1111/j.1445-5994.1982.tb03805.x
  27. Flores-Rebollar A, Perez-Diaz I, Lagunas-Barcenas S, Garcia-Martinez B, Rivera-Moscoso R, Fagundo-Sierra R. Clinical utility of an ultrasensitive thyroglobulin assay in the follow-up of patients with differentiated thyroid cancer: can the stimulation test be avoided in patients with an intermediate recurrence risk? Acta Otorhinolaryngol Ital. 2018 Jun;38(3):188-193. doi: 10.14639/0392-100X-1494. PMID:29984794 doi:http://dx.doi.org/10.14639/0392-100X-1494
  28. Miyauchi A, Kudo T, Miya A, Kobayashi K, Ito Y, Takamura Y, Higashiyama T, Fukushima M, Kihara M, Inoue H, Tomoda C, Yabuta T, Masuoka H. Prognostic impact of serum thyroglobulin doubling-time under thyrotropin suppression in patients with papillary thyroid carcinoma who underwent total thyroidectomy. Thyroid. 2011 Jul;21(7):707-16. doi: 10.1089/thy.2010.0355. Epub 2011 Jun 7. PMID:21649472 doi:http://dx.doi.org/10.1089/thy.2010.0355
  29. Katko M, Gazso AA, Hircsu I, Bhattoa HP, Molnar Z, Kovacs B, Andrasi D, Aranyosi J, Makai R, Veress L, Torok O, Bodor M, Samson L, Nagy EV. Thyroglobulin level at week 16 of pregnancy is superior to urinary iodine concentration in revealing preconceptual and first trimester iodine supply. Matern Child Nutr. 2018 Jan;14(1). doi: 10.1111/mcn.12470. Epub 2017 Jun 7. PMID:28593684 doi:http://dx.doi.org/10.1111/mcn.12470
  30. De Leo S, Pearce EN. Autoimmune thyroid disease during pregnancy. Lancet Diabetes Endocrinol. 2018 Jul;6(7):575-586. doi:, 10.1016/S2213-8587(17)30402-3. Epub 2017 Dec 12. PMID:29246752 doi:http://dx.doi.org/10.1016/S2213-8587(17)30402-3
  31. doi: https://dx.doi.org/10.1001/jama.1979.03290350043022
Personal tools