|
|
Line 1: |
Line 1: |
| | | |
| ==HUMAN GLUTATHIONE S-TRANSFERASE P1-1 Y49F MUTANT== | | ==HUMAN GLUTATHIONE S-TRANSFERASE P1-1 Y49F MUTANT== |
- | <StructureSection load='22gs' size='340' side='right' caption='[[22gs]], [[Resolution|resolution]] 1.90Å' scene=''> | + | <StructureSection load='22gs' size='340' side='right'caption='[[22gs]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[22gs]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=22GS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=22GS FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[22gs]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=22GS OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=22GS FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MES:2-(N-MORPHOLINO)-ETHANESULFONIC+ACID'>MES</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GSTP1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GSTP1 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Glutathione_transferase Glutathione transferase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.5.1.18 2.5.1.18] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=22gs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=22gs OCA], [http://pdbe.org/22gs PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=22gs RCSB], [http://www.ebi.ac.uk/pdbsum/22gs PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=22gs ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=22gs FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=22gs OCA], [https://pdbe.org/22gs PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=22gs RCSB], [https://www.ebi.ac.uk/pdbsum/22gs PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=22gs ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GSTP1_HUMAN GSTP1_HUMAN]] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Regulates negatively CDK5 activity via p25/p35 translocation to prevent neurodegeneration.<ref>PMID:21668448</ref> | + | [[https://www.uniprot.org/uniprot/GSTP1_HUMAN GSTP1_HUMAN]] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Regulates negatively CDK5 activity via p25/p35 translocation to prevent neurodegeneration.<ref>PMID:21668448</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 32: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Glutathione S-transferase|Glutathione S-transferase]] | + | *[[Glutathione S-transferase 3D structures|Glutathione S-transferase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 39: |
Line 39: |
| [[Category: Glutathione transferase]] | | [[Category: Glutathione transferase]] |
| [[Category: Human]] | | [[Category: Human]] |
| + | [[Category: Large Structures]] |
| [[Category: Oakley, A J]] | | [[Category: Oakley, A J]] |
| [[Category: Detoxification]] | | [[Category: Detoxification]] |
| Structural highlights
Function
[GSTP1_HUMAN] Conjugation of reduced glutathione to a wide number of exogenous and endogenous hydrophobic electrophiles. Regulates negatively CDK5 activity via p25/p35 translocation to prevent neurodegeneration.[1]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The thermodynamics of binding of both the substrate glutathione (GSH) and the competitive inhibitor S-hexylglutathione to the mutant Y49F of human glutathione S-transferase (hGST P1-1), a key residue at the dimer interface, has been investigated by isothermal titration calorimetry and fluorescence spectroscopy. Calorimetric measurements indicated that the binding of these ligands to both the Y49F mutant and wild-type enzyme is enthalpically favorable and entropically unfavorable over the temperature range studied. The affinity of these ligands for the Y49F mutant is lower than those for the wild-type enzyme due mainly to an entropy change. Therefore, the thermodynamic effect of this mutation is to decrease the entropy loss due to binding. Calorimetric titrations in several buffers with different ionization heat amounts indicate a release of protons when the mutant binds GSH, whereas protons are taken up in binding S-hexylglutathione at pH 6.5. This suggests that the thiol group of GSH releases protons to buffer media during binding and a group with low pKa (such as Asp98) is responsible for the uptake of protons. The temperature dependence of the free energy of binding, DeltaG0, is weak because of the enthalpy-entropy compensation caused by a large heat capacity change. The heat capacity change is -199.5 +/- 26.9 cal K-1 mol-1 for GSH binding and -333.6 +/- 28.8 cal K-1 mol-1 for S-hexylglutathione binding. The thermodynamic parameters are consistent with the mutation Tyr49 --> Phe, producing a slight conformational change in the active site.
Thermodynamic description of the effect of the mutation Y49F on human glutathione transferase P1-1 in binding with glutathione and the inhibitor S-hexylglutathione.,Ortiz-Salmeron E, Nuccetelli M, Oakley AJ, Parker MW, Lo Bello M, Garcia-Fuentes L J Biol Chem. 2003 Nov 21;278(47):46938-48. Epub 2003 Aug 23. PMID:12937169[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Sun KH, Chang KH, Clawson S, Ghosh S, Mirzaei H, Regnier F, Shah K. Glutathione-S-transferase P1 is a critical regulator of Cdk5 kinase activity. J Neurochem. 2011 Sep;118(5):902-14. doi: 10.1111/j.1471-4159.2011.07343.x. Epub , 2011 Jul 8. PMID:21668448 doi:10.1111/j.1471-4159.2011.07343.x
- ↑ Ortiz-Salmeron E, Nuccetelli M, Oakley AJ, Parker MW, Lo Bello M, Garcia-Fuentes L. Thermodynamic description of the effect of the mutation Y49F on human glutathione transferase P1-1 in binding with glutathione and the inhibitor S-hexylglutathione. J Biol Chem. 2003 Nov 21;278(47):46938-48. Epub 2003 Aug 23. PMID:12937169 doi:http://dx.doi.org/10.1074/jbc.M305043200
|