Sandbox Reserved 1646

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 13: Line 13:
=== General structure ===
=== General structure ===
-
GnRH1R has the overall architecture of <scene name='86/868179/Basic_structure/2'>seven canonical transmembranes (TM) helices</scene> with connecting extra- and intracellular loop domains (ECL/ICL) similar to [https://en.wikipedia.org/wiki/Rhodopsin-like_receptors rhodopsin-like receptors]. The structure belongs to the numerous structures of [https://en.wikipedia.org/wiki/G_protein-coupled_receptor GPCRs] currently published<ref>DOI: 10.1016/j.cell.2020.03.003</ref>. However, GnRH1R lacks the typically occurring cytoplasmic C-terminal helix and has an unusual ligand binding mode. The structural variation between existing GnRHR Typ I, II, and III in different species has been analyzed<ref>DOI: 10.1210/er.2003-0002</ref>. First crystallographic structure analysis of human GnGH1R serves the investigation of the molecular mechanism of the receptor<ref>DOI: 10.1038/s41467-020-19109-w</ref>. In this analysis the GnRH1R contains certain modifications: ICL3 (aa 243-256) is replaced by the ''Pyrococcus abysi'' <scene name='86/868179/Abysi_glycogen_synthase/3'>glycogen synthase</scene>, it is in a complex with the [https://en.wikipedia.org/wiki/Receptor_antagonist antagonistic] drug <scene name='86/868179/Elagolix/4'>elagolix</scene>, and remains in inactive conformation in respect to [https://en.wikipedia.org/wiki/G_protein G protein] coupling.
+
GnRH1R has the overall architecture of <scene name='86/868179/Basic_structure/4'>seven canonical transmembranes (TM) helices</scene> with connecting extra- and intracellular loop domains (ECL/ICL) similar to [https://en.wikipedia.org/wiki/Rhodopsin-like_receptors rhodopsin-like receptors]. The structure belongs to the numerous structures of [https://en.wikipedia.org/wiki/G_protein-coupled_receptor GPCRs] currently published<ref>DOI: 10.1016/j.cell.2020.03.003</ref>. However, GnRH1R lacks the typically occurring cytoplasmic C-terminal helix and has an unusual ligand binding mode. The structural variation between existing GnRHR Typ I, II, and III in different species has been analyzed<ref>DOI: 10.1210/er.2003-0002</ref>. First crystallographic structure analysis of human GnGH1R serves the investigation of the molecular mechanism of the receptor<ref>DOI: 10.1038/s41467-020-19109-w</ref>. In this analysis the GnRH1R contains certain modifications: ICL3 (aa 243-256) is replaced by the ''Pyrococcus abysi'' <scene name='86/868179/Abysi_glycogen_synthase/3'>glycogen synthase</scene>, it is in a complex with the [https://en.wikipedia.org/wiki/Receptor_antagonist antagonistic] drug <scene name='86/868179/Elagolix/4'>elagolix</scene>, and remains in inactive conformation in respect to [https://en.wikipedia.org/wiki/G_protein G protein] coupling.
In this conformation, the ECL2 of GnRH1R forms an <scene name='86/868179/Beta-hairpin_structure/2'>extended β-hairpin</scene> and is anchored to the extracellular tip of TM3 through a conserved disulfide bond between residues C114 and C196.
In this conformation, the ECL2 of GnRH1R forms an <scene name='86/868179/Beta-hairpin_structure/2'>extended β-hairpin</scene> and is anchored to the extracellular tip of TM3 through a conserved disulfide bond between residues C114 and C196.
Following structural highlights are different to receptors of this family: The well-known conserved D-R-Y motif is in fact the <scene name='86/868179/D-r-s_motif/2'>D138-R139-S140</scene> motif in GnRH1R. An intrahelical [https://en.wikipedia.org/wiki/Salt_bridge_(protein_and_supramolecular salt bridge] is observed between D138 and R139, as well as a polar interaction between R139 and T265 (This interaction restricts the outward movement of those TMs associated with GPCR activation). The <scene name='86/868179/N-terminus/6'>N-terminal region</scene> (aa 18–33) before TM1 is well folded and appears inserted into the orthostatic binding cavity.
Following structural highlights are different to receptors of this family: The well-known conserved D-R-Y motif is in fact the <scene name='86/868179/D-r-s_motif/2'>D138-R139-S140</scene> motif in GnRH1R. An intrahelical [https://en.wikipedia.org/wiki/Salt_bridge_(protein_and_supramolecular salt bridge] is observed between D138 and R139, as well as a polar interaction between R139 and T265 (This interaction restricts the outward movement of those TMs associated with GPCR activation). The <scene name='86/868179/N-terminus/6'>N-terminal region</scene> (aa 18–33) before TM1 is well folded and appears inserted into the orthostatic binding cavity.

Revision as of 17:33, 14 February 2021

This Sandbox is Reserved from 26/11/2020, through 26/11/2021 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1643 through Sandbox Reserved 1664.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Gonadotropin releasing hormone 1 receptor (GnRHR)

PDB ID 7BR3

Drag the structure with the mouse to rotate
Personal tools