|
|
Line 3: |
Line 3: |
| <StructureSection load='1q9i' size='340' side='right'caption='[[1q9i]], [[Resolution|resolution]] 1.60Å' scene=''> | | <StructureSection load='1q9i' size='340' side='right'caption='[[1q9i]], [[Resolution|resolution]] 1.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1q9i]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Acam_591 Acam 591]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Q9I OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=1Q9I FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1q9i]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Acam_591 Acam 591]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1Q9I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1Q9I FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=TEO:MALATE+LIKE+INTERMEDIATE'>TEO</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=HEC:HEME+C'>HEC</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene>, <scene name='pdbligand=TEO:MALATE+LIKE+INTERMEDIATE'>TEO</scene></td></tr> |
| <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1qjd|1qjd]]</div></td></tr> | | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1qjd|1qjd]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">fcca ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=56812 ACAM 591])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">fcca ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=56812 ACAM 591])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Succinate_dehydrogenase Succinate dehydrogenase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.3.99.1 1.3.99.1] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Succinate_dehydrogenase Succinate dehydrogenase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.3.99.1 1.3.99.1] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=1q9i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1q9i OCA], [http://pdbe.org/1q9i PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1q9i RCSB], [http://www.ebi.ac.uk/pdbsum/1q9i PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1q9i ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1q9i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1q9i OCA], [https://pdbe.org/1q9i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1q9i RCSB], [https://www.ebi.ac.uk/pdbsum/1q9i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1q9i ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/FRDA_SHEFR FRDA_SHEFR]] Catalyzes fumarate reduction using artificial electron donors such as methyl viologen. The physiological reductant is unknown, but evidence indicates that flavocytochrome c participates in electron transfer from formate to fumarate and possibly also to trimethylamine oxide (TMAO). This enzyme is essentially unidirectional. | + | [[https://www.uniprot.org/uniprot/FRDA_SHEFR FRDA_SHEFR]] Catalyzes fumarate reduction using artificial electron donors such as methyl viologen. The physiological reductant is unknown, but evidence indicates that flavocytochrome c participates in electron transfer from formate to fumarate and possibly also to trimethylamine oxide (TMAO). This enzyme is essentially unidirectional. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[FRDA_SHEFR] Catalyzes fumarate reduction using artificial electron donors such as methyl viologen. The physiological reductant is unknown, but evidence indicates that flavocytochrome c participates in electron transfer from formate to fumarate and possibly also to trimethylamine oxide (TMAO). This enzyme is essentially unidirectional.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The crystal structures of various different members of the family of fumarate reductases and succinate dehydrogenases have allowed the identification of a mobile clamp (or capping) domain [e.g., Taylor, P., Pealing, S. L., Reid, G. A., Chapman, S. K., and Walkinshaw, M. D. (1999) Nat. Struct. Biol. 6, 1108-1112], which has been proposed to be involved in regulating accessibility of the active site to substrate. To investigate this, we have constructed the A251C:S430C double mutant form of the soluble flavocytochrome c(3) fumarate reductase from Shewanella frigidimarina, to introduce an interdomain disulfide bond between the FAD-binding and clamp domains of the enzyme, thus restricting relative mobility between the two. Here, we describe the kinetic and crystallographic analysis of this double mutant enzyme. The 1.6 A resolution crystal structure of the A251C:S430C enzyme under oxidizing conditions reveals the formation of a disulfide bond, while Ellman analysis confirms its presence in the enzyme in solution. Kinetic analyses with the enzyme in both the nonbridged (free thiol) and the disulfide-bridged states indicate a slight decrease in the rate of fumarate reduction when the disulfide bridge is present, while solvent-kinetic-isotope studies indicate that in both wild-type and mutant enzymes the reaction is rate limited by proton and/or hydride transfer during catalysis. The limited effects of the inhibition of clamp domain mobility upon the catalytic reaction would indicate that such mobility is not essential for the regulation of substrate access or product release.
Probing domain mobility in a flavocytochrome.,Rothery EL, Mowat CG, Miles CS, Mott S, Walkinshaw MD, Reid GA, Chapman SK Biochemistry. 2004 May 4;43(17):4983-9. PMID:15109257[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Rothery EL, Mowat CG, Miles CS, Mott S, Walkinshaw MD, Reid GA, Chapman SK. Probing domain mobility in a flavocytochrome. Biochemistry. 2004 May 4;43(17):4983-9. PMID:15109257 doi:10.1021/bi030261w
|