|
|
Line 3: |
Line 3: |
| <StructureSection load='1c8t' size='340' side='right'caption='[[1c8t]], [[Resolution|resolution]] 2.60Å' scene=''> | | <StructureSection load='1c8t' size='340' side='right'caption='[[1c8t]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1c8t]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1C8T OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1C8T FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1c8t]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1C8T OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1C8T FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=TR1:2-(2-{2-[(BIPHENYL-4-YLMETHYL)-AMINO]-3-MERCAPTO-PENTANOYLAMINO}-ACETYLAMINO)-3-METHYL-BUTYRIC+ACID+METHYL+ESTER'>TR1</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=TR1:2-(2-{2-[(BIPHENYL-4-YLMETHYL)-AMINO]-3-MERCAPTO-PENTANOYLAMINO}-ACETYLAMINO)-3-METHYL-BUTYRIC+ACID+METHYL+ESTER'>TR1</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1slm|1slm]], [[1hfs|1hfs]], [[1c3i|1c3i]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1slm|1slm]], [[1hfs|1hfs]], [[1c3i|1c3i]]</div></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Stromelysin_1 Stromelysin 1], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.24.17 3.4.24.17] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Stromelysin_1 Stromelysin 1], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.24.17 3.4.24.17] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1c8t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1c8t OCA], [http://pdbe.org/1c8t PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1c8t RCSB], [http://www.ebi.ac.uk/pdbsum/1c8t PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1c8t ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1c8t FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1c8t OCA], [https://pdbe.org/1c8t PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1c8t RCSB], [https://www.ebi.ac.uk/pdbsum/1c8t PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1c8t ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Disease == | | == Disease == |
- | [[http://www.uniprot.org/uniprot/MMP3_HUMAN MMP3_HUMAN]] Defects in MMP3 are the cause of susceptibility to coronary heart disease type 6 (CHDS6) [MIM:[http://omim.org/entry/614466 614466]]. A multifactorial disease characterized by an imbalance between myocardial functional requirements and the capacity of the coronary vessels to supply sufficient blood flow. Decreased capacity of the coronary vessels is often associated with thickening and loss of elasticity of the coronary arteries. Note=A polymorphism in the MMP3 promoter region is associated with the risk of coronary heart disease and myocardial infarction, due to lower MMP3 proteolytic activity and higher extracellular matrix deposition in atherosclerotic lesions.<ref>PMID:8662692</ref> <ref>PMID:12477941</ref> | + | [[https://www.uniprot.org/uniprot/MMP3_HUMAN MMP3_HUMAN]] Defects in MMP3 are the cause of susceptibility to coronary heart disease type 6 (CHDS6) [MIM:[https://omim.org/entry/614466 614466]]. A multifactorial disease characterized by an imbalance between myocardial functional requirements and the capacity of the coronary vessels to supply sufficient blood flow. Decreased capacity of the coronary vessels is often associated with thickening and loss of elasticity of the coronary arteries. Note=A polymorphism in the MMP3 promoter region is associated with the risk of coronary heart disease and myocardial infarction, due to lower MMP3 proteolytic activity and higher extracellular matrix deposition in atherosclerotic lesions.<ref>PMID:8662692</ref> <ref>PMID:12477941</ref> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/MMP3_HUMAN MMP3_HUMAN]] Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans. Activates procollagenase. | + | [[https://www.uniprot.org/uniprot/MMP3_HUMAN MMP3_HUMAN]] Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans. Activates procollagenase. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 34: |
Line 34: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Matrix metalloproteinase|Matrix metalloproteinase]] | + | *[[Matrix metalloproteinase 3D structures|Matrix metalloproteinase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| Structural highlights
Disease
[MMP3_HUMAN] Defects in MMP3 are the cause of susceptibility to coronary heart disease type 6 (CHDS6) [MIM:614466]. A multifactorial disease characterized by an imbalance between myocardial functional requirements and the capacity of the coronary vessels to supply sufficient blood flow. Decreased capacity of the coronary vessels is often associated with thickening and loss of elasticity of the coronary arteries. Note=A polymorphism in the MMP3 promoter region is associated with the risk of coronary heart disease and myocardial infarction, due to lower MMP3 proteolytic activity and higher extracellular matrix deposition in atherosclerotic lesions.[1] [2]
Function
[MMP3_HUMAN] Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans. Activates procollagenase.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Human stromelysin-1 is a member of the matrix metalloproteinase (MMP) family of enzymes. The active site glutamic acid of the MMPs is conserved throughout the family and plays a pivotal role in the catalytic mechanism. The structural and functional consequences of a glutamate to glutamine substitution in the active site of stromelysin-1 were investigated in this study. In contrast to the wild-type enzyme, the glutamine-substituted mutant was not active in a zymogram assay where gelatin was the substrate, was not activated by organomercurials and showed no activity against a peptide substrate. The glutamine-substituted mutant did, however, bind to TIMP-1, the tissue inhibitor of metalloproteinases, after cleavage of the propeptide with trypsin. A second construct containing the glutamine substitution but lacking the propeptide was also inactive in the proteolysis assays and capable of TIMP-1 binding. X-ray structures of the wild-type and mutant proteins complexed with the propeptide-based inhibitor Ro-26-2812 were solved and in both structures the inhibitor binds in an orientation the reverse of that of the propeptide in the pro-form of the enzyme. The inhibitor makes no specific interactions with the active site glutamate and a comparison of the wild-type and mutant structures revealed no major structural changes resulting from the glutamate to glutamine substitution.
Expression, characterization and structure determination of an active site mutant (Glu202-Gln) of mini-stromelysin-1.,Steele DL, El-Kabbani O, Dunten P, Windsor LJ, Kammlott RU, Crowther RL, Michoud C, Engler JA, Birktoft JJ Protein Eng. 2000 Jun;13(6):397-405. PMID:10877850[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ye S, Eriksson P, Hamsten A, Kurkinen M, Humphries SE, Henney AM. Progression of coronary atherosclerosis is associated with a common genetic variant of the human stromelysin-1 promoter which results in reduced gene expression. J Biol Chem. 1996 May 31;271(22):13055-60. PMID:8662692
- ↑ Yamada Y, Izawa H, Ichihara S, Takatsu F, Ishihara H, Hirayama H, Sone T, Tanaka M, Yokota M. Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med. 2002 Dec 12;347(24):1916-23. PMID:12477941 doi:10.1056/NEJMoa021445
- ↑ Steele DL, El-Kabbani O, Dunten P, Windsor LJ, Kammlott RU, Crowther RL, Michoud C, Engler JA, Birktoft JJ. Expression, characterization and structure determination of an active site mutant (Glu202-Gln) of mini-stromelysin-1. Protein Eng. 2000 Jun;13(6):397-405. PMID:10877850
|