|
|
Line 1: |
Line 1: |
| | | |
| ==Crystal structure of Lys12Val/Cys117Val mutant of human acidic fibroblast growth factor at 1.60 angstrom resolution== | | ==Crystal structure of Lys12Val/Cys117Val mutant of human acidic fibroblast growth factor at 1.60 angstrom resolution== |
- | <StructureSection load='2hwm' size='340' side='right' caption='[[2hwm]], [[Resolution|resolution]] 1.60Å' scene=''> | + | <StructureSection load='2hwm' size='340' side='right'caption='[[2hwm]], [[Resolution|resolution]] 1.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2hwm]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HWM OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2HWM FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2hwm]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2HWM OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2HWM FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FMT:FORMIC+ACID'>FMT</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1jqz|1jqz]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1jqz|1jqz]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FGF1, FGFA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">FGF1, FGFA ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2hwm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hwm OCA], [http://pdbe.org/2hwm PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2hwm RCSB], [http://www.ebi.ac.uk/pdbsum/2hwm PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2hwm ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2hwm FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2hwm OCA], [https://pdbe.org/2hwm PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2hwm RCSB], [https://www.ebi.ac.uk/pdbsum/2hwm PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2hwm ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/FGF1_HUMAN FGF1_HUMAN]] Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.<ref>PMID:8663044</ref> <ref>PMID:16597617</ref> <ref>PMID:20145243</ref> | + | [[https://www.uniprot.org/uniprot/FGF1_HUMAN FGF1_HUMAN]] Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.<ref>PMID:8663044</ref> <ref>PMID:16597617</ref> <ref>PMID:20145243</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 32: |
Line 32: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Fibroblast growth factor|Fibroblast growth factor]] | + | *[[Fibroblast growth factor 3D structures|Fibroblast growth factor 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 38: |
Line 38: |
| </StructureSection> | | </StructureSection> |
| [[Category: Human]] | | [[Category: Human]] |
| + | [[Category: Large Structures]] |
| [[Category: Blaber, M]] | | [[Category: Blaber, M]] |
| [[Category: Dubey, V K]] | | [[Category: Dubey, V K]] |
| Structural highlights
Function
[FGF1_HUMAN] Plays an important role in the regulation of cell survival, cell division, angiogenesis, cell differentiation and cell migration. Functions as potent mitogen in vitro.[1] [2] [3]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The beta-trefoil protein human fibroblast growth factor-1 (FGF-1) is made up of a six-stranded antiparallel beta-barrel closed off on one end by three beta-hairpins, thus exhibiting a 3-fold axis of structural symmetry. The N and C terminus beta-strands hydrogen bond to each other and their interaction is postulated from both NMR and X-ray structure data to be important in folding and stability. Specific mutations within the adjacent N and C terminus beta-strands of FGF-1 are shown to provide a substantial increase in stability. This increase is largely correlated with an increased folding rate constant, and with a smaller but significant decrease in the unfolding rate constant. A series of stabilizing mutations are subsequently combined and result in a doubling of the DeltaG value of unfolding. When taken in the context of previous studies of stabilizing mutations, the results indicate that although FGF-1 is known for generally poor thermal stability, the beta-trefoil architecture appears capable of substantial thermal stability. Targeting stabilizing mutations within the N and C terminus beta-strand interactions of a beta-barrel architecture may be a generally useful approach to increase protein stability. Such stabilized mutations of FGF-1 are shown to exhibit significant increases in effective mitogenic potency, and may prove useful as "second generation" forms of FGF-1 for application in angiogenic therapy.
Spackling the crack: stabilizing human fibroblast growth factor-1 by targeting the N and C terminus beta-strand interactions.,Dubey VK, Lee J, Somasundaram T, Blaber S, Blaber M J Mol Biol. 2007 Aug 3;371(1):256-68. Epub 2007 May 31. PMID:17570396[4]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, Goldfarb M. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996 Jun 21;271(25):15292-7. PMID:8663044
- ↑ Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem. 2006 Jun 9;281(23):15694-700. Epub 2006 Apr 4. PMID:16597617 doi:10.1074/jbc.M601252200
- ↑ Fernandez IS, Cuevas P, Angulo J, Lopez-Navajas P, Canales-Mayordomo A, Gonzalez-Corrochano R, Lozano RM, Valverde S, Jimenez-Barbero J, Romero A, Gimenez-Gallego G. Gentisic acid, a compound associated with plant defense and a metabolite of aspirin, heads a new class of in vivo fibroblast growth factor inhibitors. J Biol Chem. 2010 Apr 9;285(15):11714-29. Epub 2010 Feb 9. PMID:20145243 doi:10.1074/jbc.M109.064618
- ↑ Dubey VK, Lee J, Somasundaram T, Blaber S, Blaber M. Spackling the crack: stabilizing human fibroblast growth factor-1 by targeting the N and C terminus beta-strand interactions. J Mol Biol. 2007 Aug 3;371(1):256-68. Epub 2007 May 31. PMID:17570396 doi:http://dx.doi.org/10.1016/j.jmb.2007.05.065
|