CHD4 Sandbox

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 10: Line 10:
The nucleosome is comprised of <scene name='88/880268/147-mer/2'>146-147 DNA base pairs</scene> wrapped around an <scene name='88/880268/147-mer_octamer/1'>octamer</scene> of four different proteins called histones.
The nucleosome is comprised of <scene name='88/880268/147-mer/2'>146-147 DNA base pairs</scene> wrapped around an <scene name='88/880268/147-mer_octamer/1'>octamer</scene> of four different proteins called histones.
===The Histones===
===The Histones===
-
The four histone proteins: H4, H3, H2A, and H2B make up the nucleosome with two sets of two heterodimers[2]. Heterodimers consisting of H3 and H4 as well as H2A and H2B[2]. These heterodimers form an octamer through the presence of hydrophobic interaction between dimers[2].
+
The four histone proteins: <scene name='88/880268/H4_in_complex/1'>H4</scene>, H3, H2A, and H2B make up the nucleosome with two sets of two heterodimers[2]. Heterodimers consisting of H3 and H4 as well as H2A and H2B[2]. These heterodimers form an octamer through the presence of hydrophobic interaction between dimers[2].
==The Dyad Axis==
==The Dyad Axis==
The formation of the histones via hydrophobic interactions forms the octamer[2]. This octamer has dyad symmetry between the H3 and H3 histones, forming the dyad axis and referred to as super helical location 0 (SHL 0) [2].
The formation of the histones via hydrophobic interactions forms the octamer[2]. This octamer has dyad symmetry between the H3 and H3 histones, forming the dyad axis and referred to as super helical location 0 (SHL 0) [2].

Revision as of 23:08, 10 April 2021

CHD4

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644

1. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. Farnung, L, Ochmann, M, Cramer, P. (2020) eLife 2020;9 2. Andrew Flaus (2011) Principles and practice of nucleosome positioning in vitro, Frontiers in Life Science, 5:1-2, 5-27. 3. Basta, J., & Rauchman, M. (2015). The nucleosome remodeling and deacetylase complex in development and disease. Translational research : the journal of laboratory and clinical medicine, 165(1), 36–47. https://doi.org/10.1016/j.trsl.2014.05.003 4. CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now. Aoife O’Shaughnessy and Brian Hendrich. (2013) Biochemical Society Transactions, 41, 777-782.

Proteopedia Page Contributors and Editors (what is this?)

Mike Lippincott

Personal tools