|
|
| Line 1: |
Line 1: |
| | | | |
| | ==Solution structure of NusE:NusG-CTD complex== | | ==Solution structure of NusE:NusG-CTD complex== |
| - | <StructureSection load='2kvq' size='340' side='right' caption='[[2kvq]], [[NMR_Ensembles_of_Models | 18 NMR models]]' scene=''> | + | <StructureSection load='2kvq' size='340' side='right'caption='[[2kvq]], [[NMR_Ensembles_of_Models | 18 NMR models]]' scene=''> |
| | == Structural highlights == | | == Structural highlights == |
| - | <table><tr><td colspan='2'>[[2kvq]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KVQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2KVQ FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2kvq]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ecoli Ecoli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2KVQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2KVQ FirstGlance]. <br> |
| - | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">nusG, b3982, JW3945 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> | + | </td></tr><tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">nusG, b3982, JW3945 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> |
| - | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2kvq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kvq OCA], [http://pdbe.org/2kvq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2kvq RCSB], [http://www.ebi.ac.uk/pdbsum/2kvq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2kvq ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2kvq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2kvq OCA], [https://pdbe.org/2kvq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2kvq RCSB], [https://www.ebi.ac.uk/pdbsum/2kvq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2kvq ProSAT]</span></td></tr> |
| | </table> | | </table> |
| | == Function == | | == Function == |
| - | [[http://www.uniprot.org/uniprot/RS10_ECOLI RS10_ECOLI]] Involved in the binding of tRNA to the ribosomes.[HAMAP-Rule:MF_00508] [[http://www.uniprot.org/uniprot/NUSG_ECOLI NUSG_ECOLI]] Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA and phage lambda N-mediated transcriptional antitermination.<ref>PMID:1532577</ref> <ref>PMID:1547498</ref> <ref>PMID:7505669</ref> <ref>PMID:8422985</ref> <ref>PMID:7868616</ref> <ref>PMID:7761393</ref> <ref>PMID:10383769</ref> <ref>PMID:10820031</ref> <ref>PMID:14973028</ref> | + | [[https://www.uniprot.org/uniprot/RS10_ECOLI RS10_ECOLI]] Involved in the binding of tRNA to the ribosomes.[HAMAP-Rule:MF_00508] [[https://www.uniprot.org/uniprot/NUSG_ECOLI NUSG_ECOLI]] Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA and phage lambda N-mediated transcriptional antitermination.<ref>PMID:1532577</ref> <ref>PMID:1547498</ref> <ref>PMID:7505669</ref> <ref>PMID:8422985</ref> <ref>PMID:7868616</ref> <ref>PMID:7761393</ref> <ref>PMID:10383769</ref> <ref>PMID:10820031</ref> <ref>PMID:14973028</ref> |
| | == Evolutionary Conservation == | | == Evolutionary Conservation == |
| | [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Line 33: |
Line 33: |
| | </StructureSection> | | </StructureSection> |
| | [[Category: Ecoli]] | | [[Category: Ecoli]] |
| | + | [[Category: Large Structures]] |
| | [[Category: Burmann, B M]] | | [[Category: Burmann, B M]] |
| | [[Category: Roesch, P]] | | [[Category: Roesch, P]] |
| Structural highlights
Function
[RS10_ECOLI] Involved in the binding of tRNA to the ribosomes.[HAMAP-Rule:MF_00508] [NUSG_ECOLI] Participates in transcription elongation, termination and antitermination. In the absence of Rho, increases the rate of transcription elongation by the RNA polymerase (RNAP), probably by partially suppressing pausing. In the presence of Rho, modulates most Rho-dependent termination events by interacting with the RNAP to render the complex more susceptible to the termination activity of Rho. May be required to overcome a kinetic limitation of Rho to function at certain terminators. Also involved in ribosomal RNA and phage lambda N-mediated transcriptional antitermination.[1] [2] [3] [4] [5] [6] [7] [8] [9]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Bacterial NusG is a highly conserved transcription factor that is required for most Rho activity in vivo. We show by nuclear magnetic resonance spectroscopy that Escherichia coli NusG carboxyl-terminal domain forms a complex alternatively with Rho or with transcription factor NusE, a protein identical to 30S ribosomal protein S10. Because NusG amino-terminal domain contacts RNA polymerase and the NusG carboxy-terminal domain interaction site of NusE is accessible in the ribosomal 30S subunit, NusG may act as a link between transcription and translation. Uncoupling of transcription and translation at the ends of bacterial operons enables transcription termination by Rho factor, and competition between ribosomal NusE and Rho for NusG helps to explain why Rho cannot terminate translated transcripts.
A NusE:NusG complex links transcription and translation.,Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL, Gottesman ME, Rosch P Science. 2010 Apr 23;328(5977):501-4. PMID:20413501[10]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Li J, Horwitz R, McCracken S, Greenblatt J. NusG, a new Escherichia coli elongation factor involved in transcriptional antitermination by the N protein of phage lambda. J Biol Chem. 1992 Mar 25;267(9):6012-9. PMID:1532577
- ↑ Sullivan SL, Gottesman ME. Requirement for E. coli NusG protein in factor-dependent transcription termination. Cell. 1992 Mar 6;68(5):989-94. PMID:1547498
- ↑ Nehrke KW, Zalatan F, Platt T. NusG alters rho-dependent termination of transcription in vitro independent of kinetic coupling. Gene Expr. 1993;3(2):119-33. PMID:7505669
- ↑ Li J, Mason SW, Greenblatt J. Elongation factor NusG interacts with termination factor rho to regulate termination and antitermination of transcription. Genes Dev. 1993 Jan;7(1):161-72. PMID:8422985
- ↑ Burova E, Hung SC, Sagitov V, Stitt BL, Gottesman ME. Escherichia coli NusG protein stimulates transcription elongation rates in vivo and in vitro. J Bacteriol. 1995 Mar;177(5):1388-92. PMID:7868616
- ↑ Burns CM, Richardson JP. NusG is required to overcome a kinetic limitation to Rho function at an intragenic terminator. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4738-42. PMID:7761393
- ↑ Zellars M, Squires CL. Antiterminator-dependent modulation of transcription elongation rates by NusB and NusG. Mol Microbiol. 1999 Jun;32(6):1296-304. PMID:10383769
- ↑ Pasman Z, von Hippel PH. Regulation of rho-dependent transcription termination by NusG is specific to the Escherichia coli elongation complex. Biochemistry. 2000 May 9;39(18):5573-85. PMID:10820031
- ↑ Torres M, Balada JM, Zellars M, Squires C, Squires CL. In vivo effect of NusB and NusG on rRNA transcription antitermination. J Bacteriol. 2004 Mar;186(5):1304-10. PMID:14973028
- ↑ Burmann BM, Schweimer K, Luo X, Wahl MC, Stitt BL, Gottesman ME, Rosch P. A NusE:NusG complex links transcription and translation. Science. 2010 Apr 23;328(5977):501-4. PMID:20413501 doi:328/5977/501
|