Sandbox Reserved 1665

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 15: Line 15:
The plant pathogen Pseudomonas syringae strain PtoDC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses. To suppress host defenses and promote diseases development, Pseudomonas syringae produces a variety of virulence
The plant pathogen Pseudomonas syringae strain PtoDC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses. To suppress host defenses and promote diseases development, Pseudomonas syringae produces a variety of virulence
factors, including phytohormones or chemical mimics of hormones, to manipulate hormone signaling in its host plants. P. syringae and many other plant-associated microbial pathogens can synthesize the major auxin indole-3-acetic acid (IAA), whose production is implicated in pathogen virulence. In this case the plant pathogen is affecting tomatoes, causing a mutation in them where the tomatoes dont have any defensed to fight off this plant pathogen.
factors, including phytohormones or chemical mimics of hormones, to manipulate hormone signaling in its host plants. P. syringae and many other plant-associated microbial pathogens can synthesize the major auxin indole-3-acetic acid (IAA), whose production is implicated in pathogen virulence. In this case the plant pathogen is affecting tomatoes, causing a mutation in them where the tomatoes dont have any defensed to fight off this plant pathogen.
 +
 +
As mentioned in the article, there is a variety of pseudomonas species that have evolved to grow under unfavorable environmental conditions like for example sever nutrient limitations, extreme temperatures, high salinity, low oxygen or water availability. P. syringae, a species that includes many plant pathogenic strains, developed
 +
diverse bacterial virulence mechanisms to survive in the adverse environmental conditions of the phyllosphere.
This can be relevant to certain famers growing crops in different environments or climates. Pseudomonas syringae is a pathogen that can attack a wide variety of woody plant, it especially attacks them when the plants have been damaged by frost or an injury. Knowing this information farmers can be prepared so their crops are not affected by this pathogen. They can use a certain type of spray/chemical to protect them from it.
This can be relevant to certain famers growing crops in different environments or climates. Pseudomonas syringae is a pathogen that can attack a wide variety of woody plant, it especially attacks them when the plants have been damaged by frost or an injury. Knowing this information farmers can be prepared so their crops are not affected by this pathogen. They can use a certain type of spray/chemical to protect them from it.

Revision as of 16:51, 18 April 2021

This Sandbox is Reserved from 01/25/2021 through 04/30/2021 for use in Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1665 through Sandbox Reserved 1682.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Structure of Aldehyde Dehydrogenase C (AldC) mutant (C291A) from Pseudomonas syringae in complexed with NAD+ and Octanal

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644

[1]

Personal tools