Sandbox Reserved 1670
From Proteopedia
(Difference between revisions)
| Line 6: | Line 6: | ||
== Function of your protein == | == Function of your protein == | ||
https://proteopedia.org/wiki/images/7/7f/Screen_Shot_2021-04-18_at_1.10.57_PM.png. | https://proteopedia.org/wiki/images/7/7f/Screen_Shot_2021-04-18_at_1.10.57_PM.png. | ||
| + | |||
| + | |||
This protein can be found in the plant pathogenic microbe Pseudomonas syringae strain PtoDC3000. The p. syringae mutautes its host, which in this case is tomato. The p. syringae produces a toxin that cause the tomato to not be able to fight off, there for causing diseases in the tomato. The research focuses on aldehyde dehydrogenases specifically aldC. aldehyde dehydrogenases are known for its capability to detoxing aldehydes, this is important because aldehydes are very reactive, so for an example from the article they can be turned into carboxylic acids which are not as reactive, which I believe slows down the mutation. The substrate of the AldC PtoDC3000 shows that this enzyme functions as a long-chain aliphatic aldehyde dehydrogenase. This article states that they ran tests to find the best substrate for this enzyme, which they found multiple substrate such as aliphatic aldehydes of 5–9-carbon length, as well as hydrocinnamaldehyde and 4-pyridinecarboxyaldehyde but it shows that octanal has the highest activity. This protein structure is a homodimer meaning it is two identical chains (A and B) covalently bonded together. <scene name='87/873232/Rotating_homodimer_protein/2'>Spinning protein</scene> | This protein can be found in the plant pathogenic microbe Pseudomonas syringae strain PtoDC3000. The p. syringae mutautes its host, which in this case is tomato. The p. syringae produces a toxin that cause the tomato to not be able to fight off, there for causing diseases in the tomato. The research focuses on aldehyde dehydrogenases specifically aldC. aldehyde dehydrogenases are known for its capability to detoxing aldehydes, this is important because aldehydes are very reactive, so for an example from the article they can be turned into carboxylic acids which are not as reactive, which I believe slows down the mutation. The substrate of the AldC PtoDC3000 shows that this enzyme functions as a long-chain aliphatic aldehyde dehydrogenase. This article states that they ran tests to find the best substrate for this enzyme, which they found multiple substrate such as aliphatic aldehydes of 5–9-carbon length, as well as hydrocinnamaldehyde and 4-pyridinecarboxyaldehyde but it shows that octanal has the highest activity. This protein structure is a homodimer meaning it is two identical chains (A and B) covalently bonded together. <scene name='87/873232/Rotating_homodimer_protein/2'>Spinning protein</scene> | ||
Revision as of 01:48, 19 April 2021
| This Sandbox is Reserved from 01/25/2021 through 04/30/2021 for use in Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1665 through Sandbox Reserved 1682. |
To get started:
More help: Help:Editing |
Structure of Aldehyde dehydrogenase
| |||||||||||
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
.
