Sandbox Reserved 1677

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 17: Line 17:
== Important amino acids==
== Important amino acids==
-
+
In order to determine the substrate preference of AldC, a panel of 23 molecules including short to long chain aliphatic aldehydes was used to screen for enzymatic activity. Spectrophotometric assays of AldC identified aliphatic aldehydes of 5-9 carbon length as substrates. It turns out that the 8 carbon carbon substrate is the preferred aliphatic aldehyde substrate in this case Octanal, which is surrounded by aromatic rings. On the comparison table, data suggest that short 2-4 carbon aldehydes, branched aliphatic aldehydes and larger aromatic aldehydes are poor substrates. Octanal has the lowest Km and highest Vmax values. as you can be by the really amazing ligand that is bound to it.
-
== Aldehyde substrates, it turns out that the 8 carbon carbon substrate is the preferred aliphatic aldehyde substrate in this case Octanal, which is surrounded by aromatic rings. Octanal has the lowest Km and highest Vmax values. as you can be by the really amazing ligand that is bound to it.
+

Revision as of 03:00, 19 April 2021

==

This Sandbox is Reserved from 01/25/2021 through 04/30/2021 for use in Biochemistry taught by Bonnie Hall at Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1665 through Sandbox Reserved 1682.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Your Heading Here (maybe something like 'Structure')

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
==
Personal tools