|
|
Line 3: |
Line 3: |
| <StructureSection load='1su8' size='340' side='right'caption='[[1su8]], [[Resolution|resolution]] 1.10Å' scene=''> | | <StructureSection load='1su8' size='340' side='right'caption='[[1su8]], [[Resolution|resolution]] 1.10Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1su8]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_baa-161 Atcc baa-161]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1jjy 1jjy]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SU8 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1SU8 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1su8]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Atcc_baa-161 Atcc baa-161]. This structure supersedes the now removed PDB entry [http://oca.weizmann.ac.il/oca-bin/send-pdb?obs=1&id=1jjy 1jjy]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SU8 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1SU8 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=NFS:FE(4)-NI(1)-S(5)+CLUSTER'>NFS</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=NFS:FE(4)-NI(1)-S(5)+CLUSTER'>NFS</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1su6|1su6]], [[1su7|1su7]], [[1suf|1suf]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[1su6|1su6]], [[1su7|1su7]], [[1suf|1suf]]</div></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Carbon-monoxide_dehydrogenase_(acceptor) Carbon-monoxide dehydrogenase (acceptor)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.2.99.2 1.2.99.2] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Carbon-monoxide_dehydrogenase_(acceptor) Carbon-monoxide dehydrogenase (acceptor)], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.2.99.2 1.2.99.2] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1su8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1su8 OCA], [http://pdbe.org/1su8 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1su8 RCSB], [http://www.ebi.ac.uk/pdbsum/1su8 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1su8 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1su8 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1su8 OCA], [https://pdbe.org/1su8 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1su8 RCSB], [https://www.ebi.ac.uk/pdbsum/1su8 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1su8 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/COOS2_CARHZ COOS2_CARHZ]] CODH oxidizes carbon monoxide coupled, via CooF, to the reduction of a hydrogen cation by a hydrogenase (possibly CooH) (By similarity). | + | [[https://www.uniprot.org/uniprot/COOS2_CARHZ COOS2_CARHZ]] CODH oxidizes carbon monoxide coupled, via CooF, to the reduction of a hydrogen cation by a hydrogenase (possibly CooH) (By similarity). |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[COOS2_CARHZ] CODH oxidizes carbon monoxide coupled, via CooF, to the reduction of a hydrogen cation by a hydrogenase (possibly CooH) (By similarity).
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
During the past two years, crystal structures of Cu- and Mo-containing carbon monoxide dehydrogenases (CODHs) and Ni- and Fe-containing CODHs have been reported. The active site of CODHs from anaerobic bacteria (cluster C) is composed of Ni, Fe, and S for which crystallographic studies of the enzymes from Carboxydothermus hydrogenoformans, Rhodospirillum rubrum, and Moorella thermoaceticarevealed structural similarities in the overall protein fold but showed substantial differences in the essential Ni coordination environment. The [Ni-4Fe-5S] cluster C in the fully catalytically competent dithionite-reduced CODH II from C. hydrogenoformans (CODHII(Ch)) at 1.6 A resolution contains a characteristic mu(2)-sulfido ligand between Ni and Fe1, resulting in a square-planar ligand arrangement with four S-ligands at the Ni ion. In contrast, the [Ni-4Fe-4S] clusters C in CO-treated CODH from R. rubrum resolved at 2.8 A and in CO-treated acetyl-CoA synthase/CODH complex from M. thermoacetica at 2.2 and 1.9 A resolution, respectively, do not contain the mu(2)-sulfido ligand between Ni and Fe1 and display dissimilar geometries at the Ni ion. The [Ni-4Fe-4S] cluster is composed of a cubane [Ni-3Fe-4S] cluster linked to a mononuclear Fe site. The described coordination geometries of the Ni ion in the [Ni-4Fe-4S] cluster of R. rubrum and M. thermoacetica deviate from the square-planar ligand geometry in the [Ni-4Fe-5S] cluster C of CODHII(Ch). In addition, the latter was converted into a [Ni-4Fe-4S] cluster under specific conditions. The objective of this study was to elucidate the relationship between the structure of cluster C in CODHII(Ch) and the functionality of the protein. We have determined the CO oxidation activity of CODHII(Ch) under different conditions of crystallization, prepared crystals of the enzyme in the presence of dithiothreitol or dithionite as reducing agents under an atmosphere of N(2) or CO, and solved the corresponding structures at 1.1 to 1.6 A resolutions. Fully active CODHII(Ch) obtained after incubation of the enzyme with dithionite under N(2) revealed the [Ni-4Fe-5S] cluster. Short treatment of the enzyme with CO in the presence of dithiothreitol resulted in a catalytically competent CODHII(Ch) with a CO-reduced [Ni-4Fe-5S] cluster, but a prolonged treatment with CO caused the loss of CO-oxidizing activity and revealed a [Ni-4Fe-4S] cluster, which did not contain a mu(2)-S. These data suggest that the [Ni-4Fe-4S] cluster of CODHII(Ch) is an inactivated decomposition product originating from the [Ni-4Fe-5S] cluster.
Carbon monoxide induced decomposition of the active site [Ni-4Fe-5S] cluster of CO dehydrogenase.,Dobbek H, Svetlitchnyi V, Liss J, Meyer O J Am Chem Soc. 2004 May 5;126(17):5382-7. PMID:15113209[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Dobbek H, Svetlitchnyi V, Liss J, Meyer O. Carbon monoxide induced decomposition of the active site [Ni-4Fe-5S] cluster of CO dehydrogenase. J Am Chem Soc. 2004 May 5;126(17):5382-7. PMID:15113209 doi:http://dx.doi.org/10.1021/ja037776v
|