CHD4 Sandbox
From Proteopedia
(Difference between revisions)
Line 16: | Line 16: | ||
The state of the minor groove directionality is referred to as SHL (Super Helical Location) [2]. With the DNA wrapping 1.65 turns around the nucleosome, the status of the minor groove conformation with respect to the orientation of the nucleosome with SHL 0 (the Dyad axis) [2]. It is to be noted that SHL positions can be both + and – but the position remains similar, as they reflect over the dyad axis at SHL 0[2]. The sign of the SHL is referring to which pole of the nucleosome the protein domain binds to on the DNA[2]. The directionality of the DNA bound to the nucleosome changes with the ± sign of the SHL as there is an enter and exit direction of the DNA on the nucleosome[2]. | The state of the minor groove directionality is referred to as SHL (Super Helical Location) [2]. With the DNA wrapping 1.65 turns around the nucleosome, the status of the minor groove conformation with respect to the orientation of the nucleosome with SHL 0 (the Dyad axis) [2]. It is to be noted that SHL positions can be both + and – but the position remains similar, as they reflect over the dyad axis at SHL 0[2]. The sign of the SHL is referring to which pole of the nucleosome the protein domain binds to on the DNA[2]. The directionality of the DNA bound to the nucleosome changes with the ± sign of the SHL as there is an enter and exit direction of the DNA on the nucleosome[2]. | ||
==Scaffolding of Histones for DNA== | ==Scaffolding of Histones for DNA== | ||
- | The alpha1, aplha2, and alpha3 helices fold and form loops within the histone proteins thus connecting each helix within a histone[2]. The interaction of an alpha1 and alpha2 (L1) and an alpha2 and alpha3 (L2) loops is referred to as an L1L2 motif. While the interaction of the N-terminal ends of an alpha1 helix of the histone is referred to as an alpha1alpha1 motif [2]. These interactions of loops form points of interaction between the minor groove of the DNA and the histone octamer. Histone heterodimer H3-H4 has an L1L2 interaction at SHL ± 0.5, alpha1alpha1 interaction at SHL ± 1.5, and L1L2 interaction at SHL ± 2.5[2]. Histone heterodimer H2A-H2B has an L1L2 interaction at SHL ± 3.5, alpha1alpha1 interaction at SHL ± 4.5, and L1L2 interaction at SHL ± 5.5[2]. The H3 histone protein has an alphaN interaction with DNA at SHL ± 0.5/6.5 [2]. | + | The alpha1, aplha2, and alpha3 helices fold and form loops within the histone proteins thus connecting each helix within a histone[2]. The interaction of an alpha1 and alpha2 (L1) and an alpha2 and alpha3 (L2) loops is referred to as an <scene name='88/880268/L1l2/1'>L1L2</scene> motif. While the interaction of the N-terminal ends of an alpha1 helix of the histone is referred to as an alpha1alpha1 motif [2]. These interactions of loops form points of interaction between the minor groove of the DNA and the histone octamer. Histone heterodimer H3-H4 has an L1L2 interaction at SHL ± 0.5, alpha1alpha1 interaction at SHL ± 1.5, and L1L2 interaction at SHL ± 2.5[2]. Histone heterodimer H2A-H2B has an L1L2 interaction at SHL ± 3.5, alpha1alpha1 interaction at SHL ± 4.5, and L1L2 interaction at SHL ± 5.5[2]. The H3 histone protein has an alphaN interaction with DNA at SHL ± 0.5/6.5 [2]. |
=CHD4 Functions= | =CHD4 Functions= | ||
==Double Chromodomain/PHD Zinc Finger== | ==Double Chromodomain/PHD Zinc Finger== |
Revision as of 03:18, 27 April 2021
CHD4
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
1. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. Farnung, L, Ochmann, M, Cramer, P. (2020) eLife 2020;9 2. Andrew Flaus (2011) Principles and practice of nucleosome positioning in vitro, Frontiers in Life Science, 5:1-2, 5-27. 3. Basta, J., & Rauchman, M. (2015). The nucleosome remodeling and deacetylase complex in development and disease. Translational research : the journal of laboratory and clinical medicine, 165(1), 36–47. https://doi.org/10.1016/j.trsl.2014.05.003 4. CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now. Aoife O’Shaughnessy and Brian Hendrich. (2013) Biochemical Society Transactions, 41, 777-782.