User:Anthony Jude Durand Jr./Sandbox1
From Proteopedia
(Difference between revisions)
| Line 29: | Line 29: | ||
=== Active Site === | === Active Site === | ||
The dimetal center is essential to the catalytic activity, as previously demonstrated in the mechanism above. The <scene name='87/877627/Zn_with_measurement/3'>zinc</scene> ions are 6.4 angstroms apart <ref name="Bai">PMID:26098370</ref> | The dimetal center is essential to the catalytic activity, as previously demonstrated in the mechanism above. The <scene name='87/877627/Zn_with_measurement/3'>zinc</scene> ions are 6.4 angstroms apart <ref name="Bai">PMID:26098370</ref> | ||
| - | The ions sit above the kink created by C9 and C10 of the substrate within the active site. The ions are held into the active site through the <scene name='87/877627/His_box_w_o_water/ | + | The ions sit above the kink created by C9 and C10 of the substrate within the active site. The ions are held into the active site through the <scene name='87/877627/His_box_w_o_water/4'>His box</scene> <ref name="Kikuchi">PMID: 31838050</ref> . The nine coordinating His residues stabilize the ions into the active site forming a non-heme prosthetic group <ref name="Kikuchi">PMID: 31838050</ref> . The His box is highly conserved among the isoforms of SCD <ref name="Shen">PMID:32470559</ref> . |
| - | The <scene name='87/877627/Zn2/ | + | The <scene name='87/877627/Zn2/4'>ion</scene> closest to C10 of the substrate is 4.7 angstroms away from this carbon <ref name="Bai">PMID:26098370</ref> . This ion is coordinated by five histidine residues. The <scene name='87/877627/Zn1/4'>ion</scene> closest to C9 of the substrate is 5.2 angstroms away from this carbon <ref name="Bai">PMID:26098370</ref> This ion is coordinated with four histidine residues and one water molecule. The <scene name='87/877627/Zn_and_water_round_2/7'>water</scene> is in coordination to the zinc ion closest to it. It occupies the fifth <scene name='87/877627/His_box_w_o_labels/4'>coordination site</scene>. |
Residues around the periphery hydrogen bond to the His box to stabilize it. These residues include <scene name='87/877627/D165_correct_one/5'>D165</scene> <scene name='87/877627/E291_correct_one/3'>E291</scene> and <scene name='87/877627/E161_correct_one/3'>E161 </scene> <ref name="Bai">PMID:26098370</ref> . Another residue that stabilizes the active site is <scene name='87/877606/N261_correct_one/1'>N261</scene>. This residue hydrogen bonds to the water molecule <ref name="Bai">PMID:26098370</ref> . | Residues around the periphery hydrogen bond to the His box to stabilize it. These residues include <scene name='87/877627/D165_correct_one/5'>D165</scene> <scene name='87/877627/E291_correct_one/3'>E291</scene> and <scene name='87/877627/E161_correct_one/3'>E161 </scene> <ref name="Bai">PMID:26098370</ref> . Another residue that stabilizes the active site is <scene name='87/877606/N261_correct_one/1'>N261</scene>. This residue hydrogen bonds to the water molecule <ref name="Bai">PMID:26098370</ref> . | ||
Revision as of 20:16, 27 April 2021
Stearoyl CoA Desaturase 1
| |||||||||||
References
- ↑ Paton CM, Ntambi JM. Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab. 2009 Jul;297(1):E28-37. doi:, 10.1152/ajpendo.90897.2008. Epub 2008 Dec 9. PMID:19066317 doi:http://dx.doi.org/10.1152/ajpendo.90897.2008
- ↑ 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 2.13 2.14 2.15 2.16 Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG, Zhou M. X-ray structure of a mammalian stearoyl-CoA desaturase. Nature. 2015 Jun 22. doi: 10.1038/nature14549. PMID:26098370 doi:http://dx.doi.org/10.1038/nature14549
- ↑ Castro LF, Wilson JM, Goncalves O, Galante-Oliveira S, Rocha E, Cunha I. The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol. 2011 May 19;11:132. doi: 10.1186/1471-2148-11-132. PMID:21595943 doi:http://dx.doi.org/10.1186/1471-2148-11-132
- ↑ 4.0 4.1 4.2 4.3 Shen J, Wu G, Tsai AL, Zhou M. Structure and Mechanism of a Unique Diiron Center in Mammalian Stearoyl-CoA Desaturase. J Mol Biol. 2020 May 27. pii: S0022-2836(20)30367-3. doi:, 10.1016/j.jmb.2020.05.017. PMID:32470559 doi:http://dx.doi.org/10.1016/j.jmb.2020.05.017
- ↑ Wang H, Klein MG, Zou H, Lane W, Snell G, Levin I, Li K, Sang BC. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat Struct Mol Biol. 2015 Jul;22(7):581-5. doi: 10.1038/nsmb.3049. Epub 2015 Jun , 22. PMID:26098317 doi:http://dx.doi.org/10.1038/nsmb.3049
- ↑ 6.0 6.1 Kikuchi K, Tsukamoto H. Stearoyl-CoA desaturase and tumorigenesis. Chem Biol Interact. 2020 Jan 25;316:108917. doi: 10.1016/j.cbi.2019.108917. Epub , 2019 Dec 12. PMID:31838050 doi:http://dx.doi.org/10.1016/j.cbi.2019.108917
- ↑ 7.0 7.1 7.2 7.3 Ming-Jia, Yu and Shi-Lu, Chen From Alkane to Alkene: The Inert Aliphatic C–H Bond Activation Presented by Binuclear Iron Stearoyl-CoA Desaturase with a Long di-Fe Distance of 6 Å ACS Catalysis 2019. DOI:10.1021/acscatal.9b00456
- ↑ Ntambi JM, Miyazaki M. Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res. 2004 Mar;43(2):91-104. doi: 10.1016/s0163-7827(03)00039-0. PMID:14654089 doi:http://dx.doi.org/10.1016/s0163-7827(03)00039-0
- ↑ ALJohani AM, Syed DN, Ntambi JM. Insights into Stearoyl-CoA Desaturase-1 Regulation of Systemic Metabolism. Trends Endocrinol Metab. 2017 Dec;28(12):831-842. doi: 10.1016/j.tem.2017.10.003., Epub 2017 Oct 28. PMID:29089222 doi:http://dx.doi.org/10.1016/j.tem.2017.10.003
- ↑ Lu Y, Bu L, Zhou S, Jin M, Sundberg JP, Jiang H, Qian M, Shi Y, Zhao G, Kong X, Hu L. Scd1ab-Xyk: a new asebia allele characterized by a CCC trinucleotide insertion in exon 5 of the stearoyl-CoA desaturase 1 gene in mouse. Mol Genet Genomics. 2004 Sep;272(2):129-37. doi: 10.1007/s00438-004-1043-3. Epub , 2004 Jul 29. PMID:15278437 doi:http://dx.doi.org/10.1007/s00438-004-1043-3
Student Contributors
- Abbey Wells
- Josey McKinley
- Anthony Durand
